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Abstract

The swissgrid is the national power grid in Switzerland which is the largest in that

area. Not only does it supply power to Switzerland it also exports  and imports power

from its neighboring countries. The power grid must be kept at a balance of 50Hz

frequency.  In  order  to  help  the  operators  maintain  and  take  necessary  action  to

maintain this frequency, monitoring the grid is vital. Currently, studies do not clearly

show of any prediction models that the swissgrid uses. Hence this study is focused on

assisting the operators monitor the grid and help them predict the energy consumption

for the swiss control block.

In order to assist the operators, and interested parties, the grid data has been analyzed

in  order  to  derive  real-time  and  batch  analytics  using  the  WSO2 Data  Analytics

Server.  The  real-time  analytics  computed  based  on  the  Siddi  engine  and  batch

analytics  based  on  the  Apache  Spark  engine  is  able  to  be  viewed  on  a  central

dashboard  powered  by  WSO2 Data  Analytics  Server.  Moreover  the  solution  also

provides the ability to configure to detect any anomalies in the power grid and  alarm

any interested parties via SMS or E-mail.

The research goes on to find a model to predict the total energy consumption of the

swiss control block. A model was successfully built  in order to predict the energy

consumption using the Liner regression with rolling window analysis. Using a 30 day

window it was found that the model's optimal training data set is of 1.5 years worth

data.  The research  expanded to  find any co-relation between multiple  factors  that

would affect the energy consumption. Using the season, and whether or not the date is

a holiday, a model was built based on the multiple regression algorithm. This model

was found to be trained better with the least Absolute Mean average for a data set of 2

years  of  data.  The models  built  were tested against  the  predicting  data  set  which

proved to have predict the energy consumption easily. 

The aim of the project is achieved by providing centrally viewable statistics and a

tested model to predict the total energy consumption for the swiss control block.
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Chapter 1 

Introduction

The  Swissgrid  is  the  largest  electricity  transmission  grid   in  Switzerland.  It’s

operations  are  mission  critical  for  the  countries  power  stability  as  well  as  its

neighboring countries. Swissgrid has faced losses in the past due to lack of a proper

alerting system and proper forecasting system. With the aid of real time analytics

Swissgrid will be able to make timely decisions more efficiently and effectively.. This

study mainly has focused on building a machine learning model to predict the energy

consumption  and to  create  a  dashboard  to  view real  time and batch  analytics  on

energy  consumption  and  production.  The  data  sets  that  are  made  public  by  the

Swissgrid were refined and used for this purpose.

1.1 Background & Motivation 

Being  the  national  electricity  transmission  grid,  it  is  not  only  responsible  for  the

secure, reliable  and cost-effective operation of the grid but also responsible for the

coordination  and usage  in  the  cross-border exchange of electricity  in  Europe.  It  is

critical that the operations remain smooth and continuous in the Swiss grid in order to

avoid any power imbalances and in turn avoid any shortages for all countries that are a

part of the Swissgrid.

The Swiss grid has two main tasks [1]: 

• Transportation of Energy to the end users via the transmission system 

• Trading of Electricity with bordering countries. 

The transmission system as a whole is implemented in a ground distance of 6700

kilometers. The cross border exchange of electricity is done at over 40 points with the

neighboring countries as illustrated in the below Figure 1.1. Monitoring all of these 40

points is essential for the Swissgrid. It is also critical that any catastrophic event such as

a power imbalance in one of these points  is brought to notice of the Swissgrid operators

as soon as possible in order for prompt action to be taken to mitigate any damages or

losses to Swissgrid.
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In a compact view, the swiss grid could be detailed out as below in Table 1.1. 2

Total length of transmission system 6,700 km

Electricity pylons 12'000

Substations 141

Total energy production 58'988 Gwh

Import 33'505 GWh

Export 29'091 GWh

Transit 23'887 GWh

Table 1.1: Swissgrid facts

2

Figure 1.1 - Swiss Electricity Market in 2010 [2]



For  Swissgrid,  the  pressure  is  on  the  security  of  supply.  This  is  because  the

Swissgrid  can  not  tolerate  any power  outages  and  must  be  running  at  all  times.

Hence,  it  is  considered to be one of  the most stable  transmission systems in the

world. 

The Swissgrid has made its grid data open and free for analysis. This data includes the

grid-related data for the transmission grid and the Swiss control area. The data on the

energy overview for Switzerland includes the aggregated quarter-hourly or hourly

energy data figures. 

There are events in history where countries had blackouts or the electricity suppliers

had to pay customers to consume energy because the electricity usage/exchange was

not properly monitored and action was not taken spontaneously.  Italy once had a

blackout of 2min and 30seconds due to a line tipping and the export/import was not

handled in a timely manner, hence when the line was balanced with a 24 minuet delay it

was too late to correct the electricity flow which caused the blackout to the entire

country except Sardinia [3]. At one instance Germany had to pay their consumers to

use the excess energy generated [4]. This too is a lack of awareness of generated

electricity and could have been managed more efficiently if there was a monitoring

system. 

The motivation of this  project is  to  be able  help the Swissgrid to  timely  identify

issues regarding the analyzed data and be able to provide solutions by taking correct

decisions  and  avoid  any  shortages.  Thereby  being  able  to  provide  energy  to  its

consumers  in  the  most  secure,  reliable  and  cost-effective  manner.  Being  able  to

visualize real  time analytics will  help in  making real  time decisions for operators

much quicker and accurate. This is turn will make a positive impact in the service

provided. In an age that Swissgrid is moving to smart grids and super grids making

use of data analytics is a must in order to ensure a quality service supply and make the

lives of the consumers and operators easier. 
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1.2 . Aim and Objectives 

1.2. 1 Aim 

The Aim of this project is to analyze the Swissgrid Data and produce useful statistics to

assist in timely quality decisions, which would ease the lives of the operators and the

consumers. 

1.2.2 Objectives 

1. Read the data and identify the data required for effective analysis 

The Swissgrid data consists of various types of data. These data could be used in a

number of combinations to bring out various statistics. Hence it was required to study

the data and derive the statistics that has been worked on in this project, for example,

the average energy consumption or production during the last hour. 

By deriving these data, and coming up with statistics, the grid operators could take

effective decisions timely and thereby maintain and improve the quality of the service

at all times. 

2.Deriving a model to predict and forecast events  such as increase in consumption or

production

Derive a model using various data mining techniques such as clustering, windowing

etc  and derive  a  working model  to  predict  and forecast  for  grid  operations.  For

example:- 

• Consumption 

• Identify patterns in energy consumption 

By being able to forecast certain statistics such as average energy consumption, the

grid operators could thereby be prepared for any situations that could arise, and/or take

decisions based on it. 

3.  Create a centralized dashboard to view the real-time and batch

analytics 
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Create a dashboard to view statistics, so that the end users such as grid operators

could have one place to view all the statistics and make timely and efficient decisions

to improve and maintain the quality of the service provided. 

4. Provide alerts on alarming events  such as sudden increase of electricity consumption

For events such as consumption is greater than production, if the threshold value is

challenged  WSO2  DAS[12]  can  create  real-time  alerts  (email,  SMS,  push

notification, physical sensor alarms, etc.) for instant  condition reporting. This will

help  in  notifying  all  involved parties  automatically,  in  parallel,  and thereby assist

prompt action to be taken on such events. 

1.3 Tools and technology 

This project is aimed in carrying out batch and real time analysis as well as training a

data  model  using  this  data  and  visualizing  them.  The  WSO2  Data  Analytics

Server[12] has been used to achieve the following. 

• Analyzing data in Real-time 

• Analyzing data in batch 

• Visualizing the analytics in a centralized location. 

The WSO2 Data analytics server is a data analytic platform in which batch and real

time analytics could be performed. The WSO2 DAS[12] is designed to handle millions

of  event  per  second,  hence  it  is  capable  handling  big  data  volumes  such  as  the

Swissgrid data. 

In order to build the model for predictive analysis, SciKit[17] built upon python has

been used in this project. The predictive model has been created upon training an

algorithm with per-structured data from the swiss grid data downloads. 

1.4 Structure of the thesis 

In this thesis, the Chapter 2 issues  and  challenges  encountered  in  history  and

discusses previous work done by others. Chapter 3 discuses in detail the technology

used and justifies reasons to use the technology in order to achieve the objectives
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stated in Chapter 1. Chapter 4 explains how the technology mentioned in Chapter 3

will  be  used  in  a  methodical  manner  to  achieve  the  objectives  and aims  of  this

research. Chapter 5 will describe the design used to implement the solution and the

analysis. Chapter 6 explains in details the implementation of the system adhering to

the design. Chapter 7 details on how the solution was evaluated is discussed in this

chapter. Chapter 8 will gracefully conclude the results obtained by this research and

discuss on the probable future work. The list of references and appendixes will be

listed at the end completing the thesis 
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Chapter 2 

Literature Review 

2.1 Introduction 

This chapter will discuss in detail the previous work done and validate on why the

current problem requires a solution. 

2.2 Other's work 

The  swissgrid  being  the  national  electricity  grid,  critically  requires  well  defined

analytics and predictions to make their operations smoother and to maintain power

supply.  Poor  analytics  and  poor  monitoring  has  resulted  in  many  problematic

situations in history. One most recent incidents was when in 2016, Germany had to

pay their consumers to use the excess energy they had, which was generated from

renewable energy sources [5]. They had no clear predictions of the consumption and

generation. Charlton reports that the reason for this incident was the weather, and the

sun and wind had contributed immensely to the generation of electricity so much that

at the end of the day they had excess energy generated unexpectedly. More precisely

the renewable energy, the solar plant and wind turbines had generated a 87 percent of

the electricity consumption. Even though forecasting renewable energy is not an easy

task, a lot of research around it has been and is continuously been carried out in order

to forecast the renewable energy production based on weather. If Germany did have a

prediction mechanism for the renewable energy, they could have easily avoided this

situation and avoid the energy wastage. 

Similarly in 2003 September, Italy had a historical blackout [3]. According to Lukszo

et  al.,  Italy  had imported  of  24% of  the total  consumption  from the neighboring

countries, which was 300MW above the agreed import level. This high usage of the

swissgrid was unable to be gracefully  controlled by the Swissgrid controller.  This

caused  most  of  Italy  to  have  a  blackout  for  2  minuets  and 30 seconds.  Lack of

communication and awareness among grid operators had lead to this situation Lukszo et

al. states in the book. 
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Another  example  Lukszo  et  al.  brings  out  in  his  book  to  show  how  important

monitoring of the grid is , the 2003 USA blackout [3]. The USA blackout was due to

mainly human error and electricity loss caused by a tree flash-over. Though they had a

proper control room, the control room was not functioning properly and for over an

hour the operators did not know that the control room machines were not functioning

properly. Not having real-time data to monitor and not having a proper alerting system

affected highly on the blackout to occur, leaving some parts of USA in darkness. 

By  analyzing  and  learning  about  the  historical  facts,  it  is  evident  that  a  proper

monitoring  and  alerting  system  is  a  very  vital  aspect  for  a  energy  management

institution to maintain and make sure the supply of energy is consistent. 

The  Swissgrid  energy  consumption,  production  and  transfer  data  is  available  for

public freely. This data is captured every 15 minuets and logged in. While the data has

many interesting fields, in this study.  The main point of concentration was on the

end user consumption for the Swiss control block. 

Energy  consumption  forecasting  have  been  a  topic  in  research  for  sometime.

Although,  many  studies  have  been  conducted  on  energy  consumption/  energy

production , and analytics of energy production data,  No research could be found on

the topic of  modelling the energy consumption in the Swiss control block, depending

on the season and the whether or not it is a public holiday. 

In the research paper [6] written by A.Borion et al. they have derived a model to

predict hourly energy loads for a US utility. In this model too they have made use of

the same factors that's used in this research. According to the research paper [6] they

have made use of weather data from 11 weather stations and consumption data in 20

zones for 4 years. As A.Borion et al. mentions about the multiple regression models

they developed and was able to reliably predict the energy load. One such model is the

Full model. He also explains that the weather data in correlation with other data, for

example Month/Temp,  Hour/Day played a  major  role  in  selecting the model.  The

Indicator model eq.(1) with which he came up earlier, it did not prove to be reliable

because of the complexities of using temperature. 

Y t=θ0+θ1 Trend+θ2 T t +θ3 T t
2+θ4 T t

3+θ5 Month+θ6 Day+θ7 Hour            (1)
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Since they encountered issues with direct weather data, they resorted to dividing data

into seasons and going ahead to build the model. Hence they derived the Full Model.

This  is  where  the  data  was  divided  into  smaller  sets  and  tuned  the  model  into

accuracy.  According  to A.Borion  et  al.,  forecasting  would  not  be  accurate  if  the

temperature is not used. Hence for forecasting he suggest the usage of the temperature

model in conjunction with the load model to create a forecasting model. Since the

load  model  was  proven  to  be  accurate  by  using  seasons,  In  this  research  it  was

decided to use seasons in place of the temperature as this [6] A.Borion et al. 's research

paper suggests. 

Big data analysis and machine learning techniques usage for predictions have been in

research  for  some  time.  P.Dagnely  et  al.  in  his  research  paper  talks  about  a

autoregressive model.[7]. In this the energy consumption is for casted hourly for an

environment such as a medium-scale office environment. In this paper P.Dagnely et

al. says that an auto regressive model is the best way to predict energy consumption.

The autoregressive baseline was computed by taking the time t-7 days when time  was

needed  to  know[7].  Though  the  research  could  not  find  an  algorithm that  would

outperform  the  autoregressive  baseline,  the  baseline  here  does  not  seem  to  be

sensitive to the weather or seasonal information as it checks for a period of 7 days. In

the study they have assumed that the energy consumption on one Monday is the same

as the next Monday, and created the baseline upon this.  However, in this study the

main point of concentration was on the season and the holidays and hence the baseline

would not work  well.  Hence it was required to build a model on regression which

would take in season and if the day is a holiday or not as factors in order to predict a

energy consumption for a future date precisely as possible. 

Monitoring the grid is critical for Swissgrid in real-time and non real time as well in

order to maintain smooth operations and avoid interruptions power to the end users.

The  Swissgrid  is  said  to  have  a  monitoring  and  modeling  system to  model  and

monitor  the oscillations  in  the power system[8].  The Swissgrid monitors  the grid

using their wide area monitoring (WAM) system. The high level architecture of the

WAM system is illustrated in Figure 2.1. 
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Information  about  Swissgrid's  monitoring  system is  not  available  freely.  No prior

studies or research conducted on forecasting the energy consumption,  real-time and

batch analytics on the Swissgrid was found. However it is reported that the Swissgrid

does have a control room which does monitor the power grids [10]. 

Siemens also reported that they have built a self-learning software system that can

stabilize power grids [6]. This program is able to forecast the renewable energy over a

72 hour period with over 90 percent accuracy. However,  though this  sophisticated

system is able to predict the renewable energy generation, it does not mention about

forecasting the energy consumption. 

On the Swissgrid site , it only shows the consumption data for a month in a graph but

does not show real-time and as a prediction. This is illustrated in Figure 2.2 & 2.3

[11]. It also does not mention about the type of monitoring done in the control room. 
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Figure 2.2: Monthly End User Consumption [19]

Figure 2.3: Monthly Energy Consumption [19]



However according to Quantum analytics [10], Swissgrid collects information about

the weather, consumption, production , reservoir water levels in order to predict the

future  and  avoid  shortages.  The  Quantum  team was  able  to  predict  a  probable

shortage and timely address the issue. However, this article does not mention about

how the model was created nor if it even has a model to predict the consumption.

From the Literature of the Swissgrid's current system to monitor the consumption, and

production and predict the consumption,  It was evident that a study to predict  the

consumption based on the weather and nature of the day (if its a holiday or not) on the

Swissgrid  data  would  be  required  and  would  help  Swissgrid  and  the  customers

immensely. Also having real time analytics and batch analytics to view on a single

screen would be beneficial to the operators and would help them take decisions without

much delay.

Limitations and Issues with the previous studies in summary is listed in Table 2.1 as

follows. 

Limitation/Issues/Learning points Reference 

The study was done on US data and not  on

Swiss grid's data, The seasons are very different. 

[6]

Using  seasons  instead  of  temperature

yield in a better forecast 

[6]

imitation  of  using  baseline  prediction  with

factors  

[19]

Swissgrid  consumption  monitoring  is

only found to be for a month

[11] 

Does  not  mention  on  any  models  to

predict the power consumption 

[10]

Using regression would be a better option for

forecasting 

[19] 

Table 2.1: Summary of previous studies 
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2.3 Summary 

History proves that monitoring a power grid is a must for any power supplier, and

having real-time and batch analytics on the data is vital to provide smooth operations.

Though Swissgrid has a control room and some studies on other forecasts have been

done for  example  renewable  energy production,  the  Swissgrid  however  does  not

publicly mention about the type of monitoring done in the control room and what

models they use (if  they use) to predict  the future consumption/productions. Also

looking at  previous studies  done on predicting the power consumption,  Since no

studies  were  found on Swiss  grids'  data,  and since  regression  is  found to  be  an

effective way to model forecasts, this research will focus on building a model that

would take the date, season, and nature of the day (If it is a holiday or not) and build a

model on the Swiss grid data to predict the energy consumption. 
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Chapter 3 

Using technology to analyze the Swissgrid Data 

3.1 Introduction 

This chapter will discuss about the technologies that was used to develop the solution.

It will also discuss on why these technologies suit the best. 

3.2 WSO2 DAS for Real time and Batch Analytics 

The WSO2 Data  Analytics  Server  [12]  is  built  upon the  award  winning  Carbon

platform. It is able to combine real-time, batch, interactive & predictive analysis into

one  platform.  As  illustrated  in  the  Figure  3.1  the  WSO2  DAS[12]  allows  the

collection, persistence, analysis and communication of data to happen for both real-

time and batch analytics seamlessly. More over, the WSO2 DAS[12] comes shipped

with  a  dashboard  where  the  analytics  can  be  viewed.  This  product  acts  as  the

middleware and will help us focus on building the statistics while it will handle the

load of handling the data. 

For this research, among the objectives were to view the batch analytics and real-time

14
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analytics in a centralized dashboard. As mentioned above, by  using this product it's

possible to do so with minimal effort. Also as the literature proves [3], it is vital to

have a updated and a clear dashboard so that the operators can have a clear idea and is

able to take decisions in time. 

Alerting  the  users  in  an alarming situation  is  also  an  important  objective  of  this

research.  As  per  the  literature,  proper  alarming  has  caused  delays  in  responding

towards the situation and have caused devastating results, for e.g. the historical Italy

blackout[3]. This product has inbuilt support for alerts. Hence, It is easy to configure

the alarming to notify people either via SMS or Email regarding a situation and notify

them in order to take action in the least possible time. 

Since WSO2 DAS[12] has a real-time analytic engine in built, it is very convenient to

create the real time analytics. The real-time engine is powered by the Siddi engine. The

Siddi query language is SQL like and hence querying for real-time analytics is very

convenient. With a execution plan written it is able to easily analyze the data on the

fly by keeping the data in a window. By using this it was easily possible to achieve

the projects objective. 

WSO2 DAS[12] has inbuilt support for Cassandra NoSQL database also, therefore, it

can easily store the data which is read from the Swissgrid data sheet and store it in

the Cassandra database.  The Cassandra database is designed to handle large number

of data. Swissgrid also produces a large number of data per day ~ 95 records which

has  ~65  fields  per  each  record.  This  is  because  they  collect  the  energy  related

information every 15 minuets. Hence by storing them in a Cassandra DB it will allow

the batch analytics to be done very efficiently. 

WSO2 DAS[12] also has a batch analytic engine in built. This is powered by Apache

Spark. Apache Spark also has a SQL like query language for spark queries to be

written with. It is called the Spark SQL. Spark is said to be a fast, powerful, open-

source  engine  that  is  built  around speed,  ease  of  use  and  sophisticated  analysis.

Querying the data on the Cassandra DB, the analytics can be created. These Analytics

can then be pushed to be displayed on the dashboard. 
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3.3 Java for preprocessing data and publishing events 

Java is a powerful open-source language designed to run on any platform. Java is

object oriented hence it is very user friendly. The solution required data pre-processing

to build the model. Since the Swissgrid has very large data sets, doing it manually was

impractical. Hence a Java program was made used to pre-process the data as it will be

used for the model. The WSO2 DAS[12] is also written in Java.  As it's required to

publish events to the WSO2 DAS[12] for demo purposes, a  publishing client was

needed. This client  was also written using Java because the integration with WSO2

DAS[12] would be seamless and because Java is Object Oriented. 

3.4 SciKit Learn for building the ML model to predict the Consumption 

One major objective of this research was to be able to build a model to predict the

power consumption of end users in the swiss control block.  For this  purpose the

SciKit Learn [17] tool is used. SciKit Learn is a machine learning tool that is built

upon  Python.  Python  is  fast  and  is  scalable.  SciKit  covers  most  of  the  machine

learning  tasks  and  has  regression  tools  in  built.  Sci  Kit  also  has  very  good

documentation that helps using the product. 

3.5 Using the rolling window analysis of time series with Linear regression 

The Rolling Analysis of a time series [16] is beneficial to asses the Machine Learning

model's stability over time. It assumes that the parameters in the model is constant

over time. However if this is an incorrect assessment that too can be identified using

this  model.  Back testing a  statistical  model  is  a common use case for  which the

rolling analysis is used. It evaluates the stability and the predictive accuracy of the

model. Since the Swissgrid data is a time series data and since the aim is to predict the

energy consumption over time, Rolling Analysis will be used. 

Linear Regression allows us to build a relationship between two variables. It attempts

to draw a straight line in the graph where the data points are plotted so that the most

number of data points fall into the straight line as illustrated in Figure 3.2. 
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However with regression only, in a time series the outcome might be misleading. It is

because in a time series the each value might be affected by the preceding value

which is referred to as autocorrelation. For example, the consumption will be high at

5:45p.m but also will  be high at  5:46 pm.  Hence it's  essential  to consider  these

information as well.  Due to that Linear Regression with the above  rolling window

analysis  have been used. 

3.6 Summary 

This chapter describes the technological choices made in order to produce a solution

to solve the problem. WSO2 DAS[12] was chosen for the real time and batch analytics

as they have in built support for both of them. A client was written in Java because of its

Object oriented nature and due to the ease of integrating with WSO2 DAS[12]. SciKit

Learn was decided to be used because it was written in python and because it already

had  support  for  linear  regression  with  rolling  window analysis  inbuilt.  The  next

chapter will describe the methodology and how the technologies selected are used in

order to build the solution. 
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Chapter 4 

Turning Swissgrid Data into Information 

4.1 Introduction 

This chapter will explain how the technologies discussed in Chapter 3 will be used to

turn the Swissgrid data into interesting and useful statistics. 

4.2 System Design & Development 

The system was designed as a Big data analytics System. As this involves a large

collection  of  data,  and requires  to  be  carefully  analyzed  the  best  fit  for  this  was

designing this as a Big data System. To model the system Unified Modeling Language

(UML) will be used. 

4.3 Language for Implementation 

This research uses open source third party products mainly for real-time and batch

analytics, it is required that the data is pushed to this system via an event stream. In a

real world this would be connected to the input stream and the stream would act upon

it.  To model  the behavior  the input  stream was written in  Java.  Java is  a Object

Oriented Programming Language. The language is a free and open source language

was  designed to  run  on any platform shining its  flexibility.  The main  reason for

selecting Java was because the third party products used also is written in Java and

integrating would be cleaner and easier. Java was also written to construct the large

data into meaningful data for analysis. To create the model using Machine Learning it

was required that the data be organized as date, month, year, end user consumption ,

season and if holiday or not. This was a tedious task to be done manually. Hence it

was done using a Java program. 

4.4 Apache Cassandra No SQL DB 

Cassandra DB is designed to handle large volumes of data efficiently and intended to

used in big data analysis scenarios. WSO2 DAS[12] has inbuilt support for Cassandra.

Cassandra has a 100% availability model, which is very important for swissgrid. Also,

Since Cassandra has a multiple master model, the writes to the server is scalable. In
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Swissgrid  the  data  is  very  important  to  be  recorded  for  monitoring  as  it  can  be

beneficial for crucial decisions. Hence having a guaranteed write model fits perfectly.

More  over,  since  it's  needed  to  query  on  the  database  for  batch  analytics,  query

language  support  would  be  required. Cassandra  supports  CQL a  SQL like  query

language. 

4.5 Writing a Java client to publish events to WSO2 DAS

A simple Java client will be written to read the Swissgrid data set from the CSV, and

create events for the WSO2 DAS[12] to process. The Java client has to be written in a

way such that the event is created according the the stream definition. Once the events

are  created  it  was  published  to  the  WSO2  DAS[12]  as  a  sequence  of  events.

Specifically here, it  read the CSV and sent an event  every 15 minutes. This has been

done because the data was collected every 15 minutes in the Swissgrid power system. If

the system was connected to the power system the data would be pumped into WSO2

DAS[12] every 15 minutes. Hence to mimic the scenario events needed to be pumped

into WSO2 DAS[12] as mentioned above. 

4.5 Real-time analysis using WSO2 Data Analytics Server 

The  WSO2  Data  Analysis  Server  (WSO2  DAS[12])  combines  real-time,  batch,

predictive and interactive analysis into one platform. It is capable of collecting data in

real-time  persisting the data  and analyzing the  data  in  order  to  create  meaningful

statistics.  Figure  4.1  illustrates  in  high  level  how  the  real  time  event  flow  is

architecture d in WSO2 DAS[12]. Moreover, it also provides a centralized dashboard

to view the statistics  in.  As this project intents in producing real time analytics,  and

since  WSO2  DAS[12]  is  reliable,  easily  configurable,  easily  extensible  and  open

source, it  has  been  selected  as  the  platform to  implement  the  suggested  solution.

Additionally WSO2 DAS[12]'s real-time analytic  engine is powered by Siddi which

can process multiple event streams in real-time. Siddi syntax is also like SQL which is

user friendly. 
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4.5.1 Reading the Data 

Using the event publisher which is written in Java, the events will be published in 15

min time span to the WSO2 DAS[12]. Within the WSO2 DAS[12], according to the

architecture  (appendix  A)  the  WSO2  DAS[12]  requires  an  event  stream  to  be

configured. The event stream can be configured via the WSO2 DAS[12] management

console. In order to analyze the data finely was required that the events are broken

down into smaller events with a fewer columns that has been used for the analytics.

For example, to  compute the average consumption only the date, month, year and

end user consumption is required. Hence it was required to extract the required fields

and create relevant events for the statistics and publish in separate streams. 

4.5.2 Persisting the Data 

Once the event stream is received it will be configured to persist the data in a NoSQL

database  meant  for  Big  data.  In  this  research  Cassandra  DB has  been used.  The

swissgrid produces a record with nearly 65 columns. All the fields in the of a record

will be persisted in the database as documents which have a structure similar to a

JSON . 

4.5.3 Computing the statistics 

The events will then be analyzed using a Siddhi Query. WSO2 DAS[12] provides an
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execution  plan  editor,  to  write  the  event  processing  logic  using  Siddhi  Query

Language.  Using  Sidhhi  the  event  processing  logic  to  create  the  statistics  was

written.  WSO2 DAS[12]  received the complete data stream which consists of 65

fields.  Then   an  execution  plan  was  used  to  extract  out  data  fields  to  different

streams .The  extracted data was then passed through to different execution plans to

carry out  various  analysis. For  example to  create  end user  consumption  real  time

statistics that was extracted out the date, year, month and end user consumption. Once

these  data  was  extracted  and  was  pumped  through  a  separate  stream,  DAS[12]

computed the statistics in a separate execution plan using the Siddi Query Language.

To obtain the average  end user  consumption  a  window of  a  year  was used, and

compute the average end user consumption for every event that was pushed. After the

computation has been done , data such as average end user consumption, the date, year

and month was collected and arranged   into  an event and written to a preconfigured

output stream. This output stream was read by the WSO2 DAS[12] Dashboard. 

4.5.4 Creating Alerts 

It is important to be alerted in a situation where an anomaly has occurred. This helps

especially in a power plant to avoid power outages. An impacted reason for Italy's

blackout[3] is because the operators were not alerted at the correct time. To avoid

situations as such alerting is important. The WSO2 DAS[12] allows creating alerts

based on the statistics derived and the information grasped out of it. 

Through the event receivers in the WSO2 DAS[12] receives events published by the

Java  client  that  was  implemented,  these  event  was  passed  into  an  execution  plan

deployed within the WSO2 DAS[12]. This execution plan has been written to process

that event and perform analysis to detect any anomalies. In this case one such alert is to

identify a gap between the total production and total end user consumption is greater

than 1. This alert is crucial because the standard frequency within Europe is 50Hz. If

consumption is higher than production then frequency is lower,  and higher if  vice

versa. Hence to maintain and monitor the frequency this alert will be very valuable.

Once the query was written to identify the anomaly, the execution plan was published.

Then every event was  queried upon this event and if an event occurs, the execution

plan would generate an event and pass it on to the preconfigured event publisher. The
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event publisher then would look into the events type, and either go on to send an

Email or an SMS as preconfigured to alert the responsible parties. 

4.6 Batch Analysis using WSO2 Data Analytics Server 

WSO2 Data Analytic Server allows batch analysis to be performed on data that is

persisted. As mentioned in section 4.5 the data that would be received by the event

receivers of the WSO2 DAS[12] would be be persisted in  a  Cassandra DB. Batch

Analytics will be done on top of the Cassandra DB. 

4.6.1 Using Apache Spark for Batch Analytics 

The WSO2 DAS[12] batch analytics engine is powered by Apache Spark. The spark

high level architecture is illustrated in Figure 4.2 below. Apache Spark is designed to

deliver fast, user friendly sophisticated analytics. 

The SQL like query language that Apache Spark provides as Spark SQL makes it easy

for queries to be written to extract analytics. For example statistics such as Average

energy consumption in last month. Once the computation is done this data will also be

stored in a temporary table in the database. By using this query Language you can

publish the events to the WSO2 DAS[12]. A Spark SQL query would be written to

create a virtual table in the Spark table space in order to store the published events. This

would  also publish the rows of it  into the predefined event  stream as events.  An
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Event  stream was  predefined with the required attributes in order to publish these

events. It is also required that a Event receiver to be created of type WSO2Event in

order to receive these events from Spark. 

The EventStreamProvider class is the interceptor between the existing Spark table and

DAS[12] event stream storage. This class will fetch the data from the existing Spark

table and publish them as events to the pre defined event stream. 

The Batch analytic scripts will be scheduled to run periodically. This will be done via

a cron job. 

4.7 Displaying the statistics in the WSO2 DAS dashboard 

The WSO2 Data Analytics Dashboard is able to create customized dashboards to view

the statistics created. It has been required to create a dashboard to view the statistics.

Once the dashboard was created, it was possible to create gadegts via DAS[12] to view

the statistics. There are many pre included gadgets in the WSO2 DAS[12] dashboard

server. Based on the type of the statistic you need to select the gadget. Once you select

the gadget you need to tell the gadget from which data publisher to receive data from. It

is also required to tell which data it needs to display and how. For e.g the difference in

the consumption and  production to be showed as a bar chart.  The Y-axis to be the

production, consumption difference and the X-axis to be the date. Once the gadget is

defined   it  is  required  to  publish  the  gadget.  A dashboard  would  be  created  by

organizing the gadgets created in the dashboard page. Once the dashboard is viewed

the gadget included will be displayed, and the real time data analytics can be displayed. 

4.8 Forecasting the end user consumption 

This last sub section that the research mainly focuses on is building a model to predict

the end user consumption. 

4.8.1 Preprocessing the data 

The Swissgrid data set consists of 65 columns of data which is collected over every

15 minuets throughout the year. That generates thousands of data records. However,

to predict the energy consumption, It required a few columns of data. Identifying this

data was done by going through the data set. It was identified that the date, end user

energy consumption for the swiss control block and the public holidays were required
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as input. Furthermore it is only required to get 1 record per day. In order to do this,

data records of one day was summarized and the average consumption was obtained.

Since pre processing the data manually is a tedious task, writing a java program to do

so was the most effective option. Hence the data was read by a Java program which

would then extract the date, month, year, total end user consumption for the swiss

control block, the season which was based on the date, and whether or not the date is a

holiday. Four years of data was created as mentioned above. The data  was stored in

CSV format. 

4.8.2 Using SciKit Learn to build the model 

SciKit Learn [17] provides build in support for well known machine learning and

statistical models. The support to such models are made available as python modules.

Users can import these modules and then train and fine tune these modules to match

to their use case via the provided APIs by these modules. 

"LinearRegression" is such module provided in SciKit which allows user to create

models  based  on  liner  regression  to  make  predictions.  In  this  research

"LinearRegression" module was used to predict end user energy consumption based

on other factors using simple liner regression and with rolling window technique.

The data was preprocessed and stored in CSV format to make it available to be fed into

the model for training. Because SciKit Learn is based on python modules[17] such as

NumPy and SciPy, it can be used in the process of training. NumPy is said to be the

fundamental package for scientific computing with Python. It can also be used as a

multi dimensional container for generic data. Similarly SciPy is also a library that is

used for scientific computing. The usage of these modules enables easy manipulation

of data and allows them to be treated as arrays. In addition, python has direct support

to read CSV files into an array. By using these capability, the data stored in a CSV file

was fetched into the memory and stored as an array and then it was fee into the liner

regression model. 

4.9 Summary

This chapter explains how the technology was used in order to solve the problem and

produce a solution. It explains and justifies in detail on using the technology. The
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chapter talks about how the WSO2 DAS[12] fits into the solution and why it is chosen

for  the  solution.  Also it  explains  why Java and Sci  Kit  learn  is  also used  in  the

solution. Apart from the technology this chapter also explains in detail the methodology

used to produce the solution to solve the problem. The next chapter will detail out the

System design specific information. 
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Chapter 5 

System Design 

5.1 Introduction 

In this chapter the architectural design and the functional aspects will be discussed. 

5.2 High level design 

The proposed system as shown in the above figure Figure 5.1 is composed of mainly

the  External  Java  client  and  the  WSO2 DAS[12]  for  the  analytics  part.  The  data

modeling has been done by a separate third party software. The external Java client

reads the data from the CSV and publishes the data to the WSO2 DAS[12]. The WSO2

DAS[12] having a configured data receiver  receives these data from the input stream.

Once the data is received it  computes the data to build the analytics. Then it  pushes

the analyzed data to the output stream and to a Event Publisher. The Dashboard then

reads the event publisher and output the data. 
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5.3 WSO2 DAS high level architecture

The WSO2 DAS[12] is capable to collect data from various different data sources. As

illustrated in Figure 5.2,  once the data is collected , it  can be persisted for batch

analytics or can be computed on the fly for real time analytics. Once the analytics are

created it  has been needed to be published for the end users to use it.  The WSO2

DAS[12] workflow consists of the following 

• Collecting Data - Is done via a single API, for external data sources ld process

the data event stream flow to generate real time analysis. The datto publish

events. The data collected could be persisted for batch analysis or coua from

the Swissgrid downloadable could be published to the WSO2 DAS[12] which

would be configured to perform real time and batch analysis. 

•  Analyzing Data - Analyzing the data could be done as batch analysis or real

time analysis.  The real time analysis engine is powered by Siddhi and the
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Figure 5.2 WSO2 DAS high level architecture [14]
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batch analysis engine is powered by Apache Spark. 

•  Communicating Results - The WSO2 DAS[12] analytics dashboard could

be used to create customized dashboards for visualizing the analyzed data. 

5.4 The Event flow

Within the WSO2 DAS[12], as shown in the above Figure 5.3 the WSO2 DAS[12]

receives Events published from an external event publisher. This is fed into the input

event stream. For batch analytics the data is persisted to a storage. In this research it is

the Cassandra DB. Once the data is persisted, an execution plan is run for the input

stream. For real time analytics this execution plan  written in Siddi SQL, is used to

generate the information to compose the analytics and it  publishes it to an output

event stream. For Batch analytics the query will be run upon  the database, and the

Spark SQL query stores the analytic informationn the database. This is configured to

run periodically.  Once the  processing  is  done upon the  data  the  analyzed data  is

published to an output event stream. Event  publishers listening to the event stream

will publish the data to the configured location. 
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Figure5.3 Event Flow[12]
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5.5 The Machine Learning model design 

Liner regression requires the user to provide with a dependent variable and one or

more explanatory variable(s). Dependent variable are the factor which is intent to be

predicted  while  explanatory  variable(s)  are  the  factors  that  decides  the  value  of

dependent  variable. This  research  mainly  focuses on  predicting  end  user  energy

consumption. Therefore, end user energy consumption was selected  as the dependent

variable. In this study  two types of models to predict the "end user energy consumption"

was built. 

1. Multiple Regression (Simple liner regression with multiple dependent variables )

2. Liner regression based on rolling window 

For the first model while "end user energy consumption" was the dependent variable,

following factors were used as the explanatory variables 

•  Year 

• Month 

• Date 

• Climate Season 

• If the day is public holiday or not 

When training data set was fed into this model to learns how the "end user energy

consumption" varies with above mentioned factors. So that it could be used to predict

the future energy consumptions 

In the second approach for building the model, the model was continuously assessed for

it's  stability, in addition to what it learns form the initial training data set.  In this

approach, if the window size is set to be n, then the last 'n' data points form the current

data point was fed into the model for the model to adjust accordingly. This  happens

continuously as the data are feed into the model. For this model only the "end user

energy consumption" was feed to the model. when data is fed, an initial set of data

points are reserved as training set and then the model progressively trained it self based
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on the rolling window approach as explained above. 

5.5.1 Absolute Mean Error (MAE)

The absolute mean error[19] in statistics are used to measure how the predictions or 

forecasts are close to the eventual outcomes as illustrated in Figure 5.4. 

if ŷ i is the predicted value of the ith sample ,and y i is the corresponding true value , then the
mean absolute error (MAE)estimated over nsamples is definedas

                   MAE ( y , ŷ )=
1

nsamples
∑
i=0

nsamples−1

|y i− ŷi|                                                 (2)
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The Absolute Mean Error, eq.(2) was taken into account when selecting the data set. In

order to determine the data set size for the correct prediction, the least absolute mean

error data set has been considered. 

5.6 Summary 

This  chapter  in  detail  discusses the proposed system's design.  It  also explains  the

WSO2 DAS[12]'s architectural design and how it helps solve the problem. The event

flow in a high level is explained and towards the end the ML model design is also

discussed. The next chapter will include the implementation specific information. 
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Chapter 6 

Implementation 

6.1 Introduction 

This Chapter will discuss on the implementation details of the implemented system. It 

will also discuss on the techniques used and algorithms used to obtain the results. 

6.2 Real-time Analytics 

6.2.1 Publishing data to the WSO2 DAS

A Java client was written to publish the data as events to WSO2 DAS[12]. This Java

client  reads the data from the Swissgrid data sheet,  and creates the events for the

WSO2 DAS[12] according to the event stream defined. More specifically, the Java code

reads the  CSV and creates event objects. A single event has a event stream Id, time

stamp, and the event payload. Via a data publisher these events are published into the

WSO2 DAS[12] in 15 minuet intervals by making the current execution thread to

sleep for 15 minuets. Please refer to the appendix A for the source code. 

6.2.2 Configuring the event stream 

On the WSO2 DAS[12] the event  stream is  required to be configured.  The event

stream should be given a name, a version, a description. The event payload has to also

be  defined in the stream. A stream was created in the WSO2 DAS[12] with the year,

month  and end  user  energy  consumption  for  the  swiss  control  block.  The  event

stream defined is as follows 

 "name": "consumption-production.enduser.consumption", 
"version": "1.0.0", 
"nickName": "", 
"description": "Energy used by end consumers in Switzerland each month. It does 

not include transmission losses.", 
"payloadData": [ 
{
"name": "year", 
"type": "STRING" 
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}, {
"name":  "month",
"type": "STRING" 

}, 
{
"name": "endUserConsumption", 
"type": "DOUBLE" 

}
]

}

6.2.3 Writing the Execution Plan 

The  execution  plan  was  written  in  the  SQL Like  Siddi  Query  language.  In  the

execution plan first of all the plan name was given. Then it imports the event stream

on which it needs to do the computations. The output streams were also mentioned in

the execution plan. To show the real time average energy consumption, the average of

the energy consumption was calculated for every event and was being inserted into a

table. The information was stored in a table and then on top of that data the average

had been  calculated.  Once the average had been calculated it  was  pushed into the

output stream. 

/* Enter a unique ExecutionPlan */ 
@Plan:name('EndUserConsumptionAnalysis') 

/* Enter a unique description for ExecutionPlan */ 
-- @Plan:description('ExecutionPlan') 

/* define streams/tables and write queries here ... */ 

@Import('consumption-production.enduser.consumption:1.0.0') 
define stream input (year string, month string, endUserConsumption double); 

@Export('perDateEnduserConsumption:1.0.0') 
define stream perDateEnduserConsumption (date string, endUserConsumption 
double); 

@Export('enduserConsumption.stats:1.0.0') 
define stream statOutput (year string, min double, max double, avg double); 

define table statTable (year string, min double, max double, avg double); 
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from input#window.firstUnique(year) 
select year, 100000.0 as min, 0.0 as max, endUserConsumption as avg 
insert into statTable; 

from input as i  join statTable on
statTable.year  ==  i.year  select
statTable.year as year, 

minimum(statTable.min, i.endUserConsumption) as min, 
maximum(statTable.max, i.endUserConsumption) as max, 
(statTable.avg + i.endUserConsumption)/2.0 as avg 

insert into statOutput; 

from statOutput 
select * 
insert overwrite statTable 

on statTable.year == year; 

from input 
select str:concat(year, "-", month) as date, endUserConsumption 
insert into perDateEnduserConsumption; 

6.2.4 Writing the output stream 

Similarly to the input stream an output stream also was defined. In the Output stream

also it required to give a name and a version. Also  payload format required to  be

defined. In this case it  only required the data and the end user consumption to display

on the dashboard. 

{
"name": "perDateEnduserConsumption", 
"version": "1.0.0", 
"nickName": "", 
"description":  "",
"payloadData": [ 
{

"name": "date", 
"type": "STRING" 

}, {
"name": "endUserConsumption", 
"type": "DOUBLE" 

}
]}
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6.3 Batch Analytics 

6.3.1 Persisting the events to a data store 

The WSO2 DAS[12] receives events in an event stream. This event stream is then

persisted to the data store. It is required that the WSO2 DAS[12] be configured with

the interested data source before hand. In this case as mentioned above it will be the 

Cassandra  data  source.  As  the  WSO2  DAS[12]  already  has  inbuilt  support  for

Cassandra, it was only a matter of uncommenting the Cassandra Data source Reader

in the configuration file. 

In order to persist the event, in the event configuration it was required to enable the

event to be persisted, by checking a check box (appendix B). 

6.3.2 Using Spark SQL to Query the database 

Spark is an SQL like query language written to query the Spark engine. The spark

query below was the query used to display one batch analytic, which was the energy

consumption of the year, in this project. 

CREATE TEMPORARY TABLE endUserConsumptionData USING CarbonAnalytics 

OPTIONS (tableName 

"CONSUMPTION-PRODUCTION_ENDUSER_CONSUMPTION",schema "year 

STRING, month STRING, endUserConsumption DOUBLE"); 

CREATE TEMPORARY TABLE yearlyendUserConsumption USING 

CarbonAnalytics OPTIONS (tableName 

"yearly_endUserConsumption_summary",schema "year STRING, 

avg_endUserConsumption DOUBLE, min_endUserConsumption DOUBLE, 

max_endUserConsumption DOUBLE"); 

INSERT OVERWRITE TABLE yearlyendUserConsumption SELECT year, 

avg(endUserConsumption) AS avg_endUserConsumption, 

min(endUserConsumption) AS min_endUserConsumption, 

max(endUserConsumption) AS max_endUserConsumption FROM 
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endUserConsumptionData GROUP BY year; 

Here the Spark SQL first creates a temporary table to store the end user consumption

data. It stores the consumption against the month and the year. Then it also creates

another temporary table to store the minimum end user consumption, the maximum

end user consumption and the average end user consumption against the year. This

allowed  the  dashboard  to  display  the  avergae,  minimum and  maximum end  user

consumption for the year. 

The Spark SQL script can be scheduled to run as a cron job. The Cron expression

could be configured when the Spark SQL is created (appendix B). 

6.4 Publishing and viewing data in the WSO2 dashboard 

To display the data in the UI, it is required that a Event Receiver was configured to

read  the output stream and publish data to the UI. 

<?xml version="1.0" encoding="UTF-8"?> 

<eventPublisher name="enduserUI" statistics="disable" trace="disable" 

xmlns="http://wso2.org/carbon/eventpublisher"> 

<from streamName="consumption-production.enduser.consumption" 

version="1.0.0"/> 

<mapping customMapping="disable" type="wso2event"/> 

<to eventAdapterType="ui"/> 

</eventPublisher> 

In this instance it publishes the end user consumption data to be viewed in a gadget in

the dashboard. 

Once the data is published, the dashboard gadget will read the data and show the real

time analytic. 

6.5 Implementing the ML model 

The Machine Learning models were implemented basically using SciKit. The "Linear

Regression" module which is available in SciKit was mainly used in this work. The
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"Linear Regression" module provides a method to pass the training data set into the

model. 

6.5.1 Reading the data for analysis 

The preprocessed data for the model had been stored in CSV files.Please refer to

appendix C for the source code of preprocessing data. These data was read from the

CSV using 'panda'  module in python. Panda is an open source python library that

provides the capability to execute the entire data analysis workflow in Python itself

[18]. The data that was read using Panda is then passed onto a instance  of "Linear

Regression" which is inbuilt in SciKit. NumPy and SciPy was used to manipulate the

data set by treating the data as an two dimensional array .

6.5.2 Using Linear Regression 

Linear Regression was used as it's required to build a relationship between two factors.

This work tries to predict the end user consumption based on the date. Hence only the

Simple Linear Regression is used. 

Following code snippet show how LinearRegression module is instantiated and data is

passed as arrays to the model for training the model 

data_set = pd.read_csv('./data/training.csv') 

y_all =

data_set['Total_Energy_Consumed_by_end_users_Swiss_controlblock'].values 

X_all = data_set[['year', 'date', 'month', 'season', 'publicHoliday']].values 

lr = LinearRegression(normalize=True) 

lr.fit(X_train, y_train) 

Once the  the  model  was  trained  as  above,  explanatory  variables  could  have  been

passed on to the  data set to get predictions on about dependent variable. Below code

snipped illustrates how an two dimensional array of explanatory variables was passed

onto the model and get the result. 

y_pred = lr.predict(X_test) 
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6.5.3 Calculating the Absoluter Error Mean 

Finally, the absolute mean error was calculated as follows to measure the accuracy

against each  predictions .

print "mean_absolute_error: %f" %(mean_absolute_error(y_test, y_pred)) 

6.5.4 Using rolling window analysis 

In order to build a model with two or more factor the rolling window analysis has been

used. The model is continuously assessed for it's stability, in addition to what it learns

form the initial training data set. The window size has been set to the value which was

re determined. The last 'n' data points form the current data point will be passed to the

model so that the model could be trained. In this research implementation  the "end

user energy consumption"  has been passed to the model. when data is feed, an initial

set of data points are reserved as training set and then the model will progressively

training it self based on the rolling window approach as explained above. 

6.6 Summary 

The proposed system was developed using the WSO2 DAS[12], a Java client and the

ML model was derived using the SciKit Learn tool. The real-time and batch analytics

are  viewed in the WSO2 DAS[12] Dashboard. A Java client is used to pre process

data in order to analyze and build the Machine Learning model to predict the energy

consumption. The next chapter will discuss on the evaluation of the system and the

limitations and future work. 
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Chapter 7 

Evaluation 

7.1 Introduction 

This chapter is aimed to evaluate the solution in terms of achieving the objective and

ultimately the aim. 

7.2 Evaluating the Preprocessed data 

The swissgrid data sheet has a large amount of data. Hence pre processing of that data

was required in order to train the model. This data required to be for a day, where as

the original data sheet has data records for every 15 minuets. Hence as explained in

the Implementation details, the data was aggregated and an average for a day was

created. This was done with a Java class. 

This was tested using unit testing. To evaluate this, a test class was written. A pre

determined value would be calculated based on 5 rows of data on a single date. This

test class would use that small data set with 5 rows and same number of columns as

the  original  data  set.  The  test  class  then  asserted  the  value  obtained  after  pre

processing with the pre determined value. 

7.3 Evaluating the Machine Learning Model

7.3.1 Rolling Window test results.

In this ,the training data set  kept increasing and that tried to predict the future. That is

First, the future was attempted to be predicted  by using 1 years worth of data  as the

training set. Then  the training set was increased to  be 1.5 years worth of data and so

on.

It’s important to note that in this rolling window test, it was attempted to predict the

end  user  energy  consumption  only  by  looking  at  its  past  value,  but  without

considering any other features. In other words in this model the past values of the

same feature acts as explanatory variables. The number of past values to be used as

features is decided by the window size. That is, if when there's a rolling window size
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of 30, the values of the last 30 days decides the value for today. So that  the model can

be represented in the following format

 Y = c1*day1Value + c2*day2Value + ……. + c30*day30Value                              (3)
 

For all theses tests rolling window size of 30 has been used. So that data of the last 30

days or the month is fed into the model to enable it to reassess its stability. 

7.3.1.1 Finding the correct testing data size

Figure 7.1 illustrates the result that has been obtained by using 1 year data set as the

training set and try to predict values for 2014, 2015 and 2016. In this test it has been

observed a mean absolute error of 40402 approximately

 

Following was the result that was obtained by using 1.5 year data set as illustrated in

Figure 7.2  as the training set. This data set has been used to predict values for last 6

months of 2014, year 2015 and 2016. In this test it has been observed a mean absolute

40

Figure 7.1 1 year data training set results



error of 38911 approximately

Figure 7.3  is the result that was obtained by using 2 year data set as the training set

and try to predict values for 2015 and 2016. In this test it has been observed a mean

absolute error of 39555 approximately
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Following Figure 7.4 is the result that was obtained by using 2.5 year data set as the

training set and try to predict values for last 6 month of 2015 and year 2016. In this

test it has been observed a mean absolute error of 39579 approximately
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Figure 7.5 illustrates  the result that was obtained by using 3  years data set as the

training set and try to predict values for  2016. In this test it has been observed a mean

absolute error of 40322 approximately
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By looking at the results that was observed,  the least results for the mean absolute

error is given when 2 years of data is used as the the training set. Therefore, it can be

concluded that the best training data set size is 2 years for the rolling window based

model.

Following  are  the  coefficients  of  the  model  for  the  this  test.  Because  the  rolling

window is considered to be as the set of features which decides the value, there are 30

coefficients.

[ -3.27835429e-04  -1.63487346e-01   1.82017482e-01   9.39205611e-03

 -3.54808874e-02   5.90628401e-02  -7.12785283e-02   4.29548412e-02

 -2.06309117e-01   2.46737702e-01  -8.23642069e-02   7.01043010e-02

 -5.99164900e-03  -2.95570992e-02   6.86008982e-03  -1.57872288e-01

  1.77017128e-01   4.71091544e-02  -1.68748115e-01   8.35166869e-02

 -1.86998142e-02  -6.32641494e-04  -1.94024897e-01   3.37142395e-01

  4.19067742e-02   1.25459019e-01  -1.48166239e-01   1.33358637e-01

 -7.01084360e-02   7.62576803e-01]
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7.3.2 Multiple Feature Test

In  this  test   5  factors  were  used  as  the  features  or  the  explanatory  variables.

 Following are the factors which that was used

• Year (y)

• Month (m)

• Date (d)

• Climate season (s)

• If a day is public holiday or not (h)

Therefore,   the regression model can be presented in the following format

EndUnderConsumption = c1*y + c2*m + c3*d + c4*s + c5*h                                (4)

In this test a similar approach to the rolling window was used to  train the model. That

is,  the training data set  size  kept increasing starting from data of year 2013  and tried

to predict the future till year 2016

7.3.2.1 Determining the optimal data set

Following is the result that was obtained by using 1 year data set as the training set

and try to predict values for 2014, 2015 and 2016. In this test it has been observed a

mean absolute error of 193854 approximately. This is shown in figure 7.6.
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Figure 7.6 Training data set results of 1 year 

Figure 7.7 is the result that was obtained by using 1.5 year data set as the training set

and try to predict values for last 6 month of 2014, year 2015 and 2016. In this test it

has been  observed a mean absolute error of 213190 approximately.

Figure 7.8  is the result that was obtained by using 2 year data set as the training set

and try to predict values for 2015 and 2016. In this test it has been observed a mean

absolute error of 191538 approximately
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Figure 7.7 1.5 years training data set results7

Figure 7.8 2 years training data set results 
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Following Figure 7.9 is the result that was obtained by using 2.5 year data set as the

training set and try to predict values for last 6 month of 2015 and year 2016. In this

test it has been observed a mean absolute error of 180158 approximately.

Figure 7.9 2.5 years training data set results 

Following Figure 7.10 is the result that was obtained by using 3 years data set as the

training set and try to predict values for  2016. In this test it has been observed a mean

absolute error of 183428 approximately.
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Figure 7.10 3 years training data set results 

By looking at the results that was observed,  the least results for the mean absolute

error is given when it uses 2.5 years of data for the training set. Therefore, it can be

concluded that the best training data set size is 2 years for in linear regression with

multiple types of features

Following is the equation that was derived by the best case for prediction with simple

linear regression 

EndUnderConsumption = -13618.346*y +   69.31*m  -17427.322*d -44847.31*s +

 59239.76*h                                                                                                               (5)

 

7.4 Functional testing - Real Time and Batch analytics 

Displaying the realtime and batch analytics in a dashboard is also a requirement in

this project. After separately creating the real time analytics and batch analytics. It was

integrated by a single execution plan to have persist the data received and to do the

real time analytics at the same time. To evaluate this a functional test was carried out.

The expected output was graphs and charts showing the analyzed data. 

The functional tests were as follows as listed in Table 7.1, Table 7.2 and Table 7.3
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Test Case 1 

Test Case Name Real time analytics viewed on Dashboard

Expected Output Dashboard  shows  gadget  for  real-time

analytics, with data changing with every

event that is published

Steps to follow •Publish the event using the Java client 

• Check console for event published 

•  Open  the  dashboard  of  the  WSO2

DAS[12] 

•  Check if the real-time analytic  gadget,

minimum  end  user  consumption  keeps

changing with every event published 

Table 7.1 Functional test case1
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Test Case 2 

Test Case Name Batch Analytics viewed on dashboard 

Expected Output •Dashboard  shows  gadget  for  batch

analytics 

•  Gadget  displays  data  changing  every

1hour 

Steps to Follows • Publish Events using Java client  

• Configure Spark Query to run 

every 1 hour 

•  Open  the  dashboard  of  the  WSO2

DAS[12] 

•  Check if  the batch analytic gadget for

e.g.  consumption  per  month  changes

every hour

 Table 7.2 Functional test case2
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Test Case 3 

Test Case Name Negative test case 

Expected Output • Dashboard shows gadget for batch 

analytics and real -time analytics 

• Gadget does not displays data 

Steps to Follow • Stop publishing events using Java 

client 

•  Open  the  dashboard  of  the  WSO2

DAS[12] 

• verify that the Gadget does not displays

data 

Table 7.3 Functional test case3 
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Chapter 8

Conclusion

8.1 Introduction

This chapter will  focus on the conclusion of this  research and state the outcomes.

Further this chapter will mention future work and any limitations.

8.2 Analysis of the size of the data set Size.

8.2.1 Rolling window analysis with Linear Regression for one factor

By analyzing the Absolute Mean Error that was seen with different sizes of data sets

as illustrated in Figure 8.1, it is evident  that for the rolling window analysis a data set

of 1.5 years of data is best suited.

53

 Figure 8.1: Rolling windows data set analysis



8.2.2  Multiple Linear Regression analysis

By analyzing the Absolute Mean Error that was obtained by training the data model as

illustrated in Figure 8.2, it is evidents that for Multiple Linear Regression a data aset

of 2 years is bets fit.

8.3  Retrospect

Building a model to predict the energy consumption was a major objective of this

project. With the use of Rolling Window Analysis together with Linear regressions it

was possible to build a model to predict the energy consumption. It was also found

that the best data set to train the model is of 1.5 years.

EndUnderConsumption = c1*y + c2*m + c3*d + c4*s + c5*h                              (6)
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Expanding  the  research,  it  was  also  learned  that  for  multiple  factors,  a  different

algorithm was needed. And hence the multiple regression was used. After analyzing

the data set and using the data set, a model to predict the energy consumption with 5

factors was derived. It was also learned that a data set of 2 years is the best fit.

EndUnderConsumption = c1*year + c2*month + c3*day + c4*season + c5*holiday         (7)

One other objective for this research was to build a centralized dashboard to view real

time and batch analytics in a central dashboard. With the use of WSO2 DAS[12], this

was possible. The real-time  analytics generated based on the Siddi real time engine

and the batch analytics created upon the Spark engine was brought together to be

viewed in a single dashboard.

Further more, alerting was another objective that the project set. This objective was

achieved by sending alerts to configured users, for real-time and batch analytics using

the WSO2 DAS[12].

8.4 Limitations

1. The data set that was downloaded , had nearly 65 columns.  However in this

research,  only 2 columns has been used. This was because the focus was on

building a model for consumption, and the end user consumption for swiss

control  block was the interested data.

2. The swissgrid data had to be pre processed to make meaningful information

and to derive factors for analysis. 

3. The study only limits to analyze 5 factors.

4. The  WSO2  DAS[12]  is  yet  not  matured  to  handle  variations  of  linear

regression model building. Hence used SciKit.

8.5 Future Work

1. Incorporate the model building into WSO2 DAS.

2. Use more columns of the data sheet and build relationships by means of a

model.
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8.6 Summary

This research on the swissgrid data, has resulted in two models to predict the  total

energy consumption for the swiss control block. One model which depends on one

factor which is date and the other model depending on five factors which are, date,

month, year, season and nature of day.  The selection of the optimal data set to train

the algorithms were found based one the absolute mean error that was found with

each data set. This chapter also mentions the limitations and the future work.
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Appendix A - Implementation of the Event Publisher & Data Publisher 

Event Publisher 

public class ResearchEventPublisher{ 

private static Log log = LogFactory.getLog(ResearchEventPublisher.class); 

private  static  DataPublisher  privateDataPublisher;

private static DataPublisher currentDataPublisher; 

private static int count = 0; 

public static void main(String[] args) { 

System.setProperty("org.xml.sax.driver", 

"com.sun.org.apache.xerces.internal.parsers.SAXParser"); 

System.setProperty("javax.xml.parsers.DocumentBuilderFactory","com.sun.org. 

apache.xerces.internal.jaxp.DocumentBuilderFactoryImpl"); 

System.setProperty("javax.xml.parsers.SAXParserFactory","com.sun.org.apache 

.xerces.internal.jaxp.SAXParserFactoryImpl"); 

System.out.println("Starting WSO2 Event ResearchEventPublisher Stream 

Client"); 

AgentHolder.setConfigPath(publisher.schedular.util.DataPublisherUtil.filePat 

h + "/src/main/java/files/configs/data-agent-config.xml"); 

publisher.schedular.util.DataPublisherUtil.setTrustStoreParams(); 

String protocol = "thrift"; 

String singleNodeHost = "tcp://localhost:7611"; 

String  username  =  "admin";

String password = "admin"; 

try { 

privateDataPublisher = new DataPublisher(protocol, singleNodeHost, null, 

username, password); 

currentDataPublisher = privateDataPublisher; 

List<Object[]> eventsList =
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StatisticsInputReaderTask.readCurrentValuesFromFile("/home/shani/MSC/research/s 

wiss/resources/swissDataGridData2016.csv"); 

for (Object[] eventpayload : eventsList){ 

publishEvent(eventpayload, "ControlBlock:1.0.0"); 

}

}catch(Exception e) { 

log.error("Exception occurred while Publishing data",e); 

}

}

public static void publishEvent(Object[] eventPayload, String streamId) throws 

InterruptedException { 

Event event = new Event(streamId, System.currentTimeMillis(), null, null, 

eventPayload); 

currentDataPublisher.publish(event); 

Thread.sleep(900000); 

}

}
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Creating the data publisher with the Stream definition 

public class DataPublisherUtil { 

private static Log log = LogFactory.getLog(DataPublisherUtil.class); 

public static String filePath =

"/home/shani/MSC/research/swiss/eventPublisherMsc/"; 

static File securityFile = new File(filePath + "src/main/java/files/configs"); 

public static void setTrustStoreParams() { 

String trustStore = securityFile.getAbsolutePath(); 

System.setProperty("javax.net.ssl.trustStore", trustStore + "" + File.separator + 

"client-truststore.jks"); 

System.setProperty("javax.net.ssl.trustStorePassword", "wso2carbon"); 

}

public static Map<String, StreamDefinition> loadStreamDefinitions() { 

String directoryPath = filePath + "/src/main/java/files/streamDefinitions"; 

File directory = new File(directoryPath); 

Map<String, StreamDefinition> streamDefinitions = new HashMap<String, 

StreamDefinition>(); 

if (!directory.exists()) { 

log.error("Cannot load stream definitions from " + 

directory.getAbsolutePath() + " directory not exist"); 

return streamDefinitions; 

}

if (!directory.isDirectory()) { 

log.error("Cannot load stream definitions from " + 

directory.getAbsolutePath() + " not a directory"); 

return streamDefinitions; 

}

File[] defFiles = directory.listFiles(); 

if (defFiles != null) { 

for (final File fileEntry : defFiles) { 

if (!fileEntry.isDirectory()) { 

BufferedReader bufferedReader = null; 
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StringBuilder stringBuilder = new StringBuilder(); 

try { 

bufferedReader = new BufferedReader(new FileReader(fileEntry)); 

String line; 

while ((line = bufferedReader.readLine()) != null) { 

stringBuilder.append(line).append("\n"); 

}

StreamDefinition streamDefinition = 

EventDefinitionConverterUtils.convertFromJson(stringBuilder.toString().trim()); 

streamDefinitions.put(streamDefinition.getStreamId(), 

streamDefinition); 

} catch (FileNotFoundException e) { 

log.error("Error in reading file " + fileEntry.getName(), e); 

} catch (IOException e) { 

log.error("Error in reading file " + fileEntry.getName(), e);

} catch (MalformedStreamDefinitionException e) { 

log.error("Error in converting Stream definition " + e.getMessage(), 

} finally { 

bufferedReader.close(); 

try { 

if (bufferedReader != null) { 

}

} catch (IOException e) { 

log.error("Error occurred when reading the file : " +e.getMessage(), e); 

}

}

}

}

}

return streamDefinitions; 

}

}
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Appendix B - Screen shots of the WSO2 DAS configuration 

Persisting the Event 
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Appendix B Figure 1 persisting events 



Creating the Spark SQL script 
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Appendix B Figure 2 Spark SQL script 



Appendix C -  Data preprocesser

import java.io.BufferedReader;

import java.io.FileReader;

import java.io.IOException;

import java.text.DecimalFormat;

import java.text.NumberFormat;

import java.util.ArrayList;

import java.util.Comparator;

import java.util.List;

public class DataCruncher {

    private static final String datapath = "home/shani/MSC/research/swiss/datasets";

    private static final List<Datapoint> data = new ArrayList<Datapoint>();

    public static void main(String[] args) throws IOException {

        BufferedReader br = new BufferedReader(new FileReader(datapath + 
"/data2015.csv"));

        boolean isHeaderSkipped = false;

        try {

            StringBuilder sb = new StringBuilder();

            String line = br.readLine();

            while (line != null) {

                if (isHeaderSkipped == false){

                    isHeaderSkipped = true;

                } else {

                    dailyAverage(line);

                }

                line = br.readLine();

            }

        } finally {

            br.close();

        }

        outputResults();

    }
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    private static void outputResults(){

        data.sort(Comparator.comparing(datapoint -> datapoint.hashCode()));

        data.forEach(datePoint -> {

            System.out.println(datePoint.toString());

        });

    }

    private static void dailyAverage(String line){

        final String[] columns = line.split(",");

        int year = Integer.parseInt(columns[0]);

        int month = Integer.parseInt(columns[1]);

        int date = Integer.parseInt(columns[2]);;

        double consumption = Double.parseDouble(columns[3]);

        int season = Integer.parseInt(columns[4]);

        int holidayFlag = Integer.parseInt(columns[5]);

        Datapoint dataPoint = getDataPoint(year, month, date, season, holidayFlag);

        dataPoint.adjustAverage(consumption);

    }

    private static Datapoint getDataPoint(int year, int month, int date, int season, int 
holidayFlag){

        Datapoint newDatapoint = new Datapoint(year, month, date, season, 
holidayFlag);

        for (Datapoint d : data){

            if (d.equals(newDatapoint)){

                return d;

            }

        }

        data.add(newDatapoint);
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        return newDatapoint;

    }

    static class Datapoint{

        public int month;

        int date;

        int year;

        double totalConsumption = 0.0;

        int dataPoints = 0;

        int season;

        int holidayFlag;

        static NumberFormat formatter = new DecimalFormat("#0.00");

        public Datapoint(int year, int month, int date, int season, int holidayFlag){

            this.year = year;

            this.month = month;

            this.date =  date;

            this.season = season;

            this.holidayFlag = holidayFlag;

        }

        public void adjustAverage(double newConsumptions){

            totalConsumption += newConsumptions;

            dataPoints++;

        }

        @Override

        public String toString(){

            return Integer.toString(year) + "," +             ((month < 10) ? "0" + 
Integer.toString(month) : Integer.toString(month)) + "," +

                    ((date < 10) ? "0" + Integer.toString(date) : Integer.toString(date)) + "," 
+

                    formatter.format(totalConsumption/dataPoints) + "," +
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                    Integer.toString(season) + "," +

                    Integer.toString(holidayFlag);

        }

        @Override

        public boolean equals(Object obj){

            if (obj == null) {

                return false;

            }

            if (!Datapoint.class.isAssignableFrom(obj.getClass())) {

                return false;

            }

            final Datapoint other = (Datapoint) obj;

            if (this.year == other.year && this.month == other.month && this.date == 
other.date){

                return true;

            } else {

                return false;

            }

        }

        @Override

        public int hashCode(){

            String hashString = Integer.toString(year) +

                    ((month < 10) ? "0" + Integer.toString(month) : Integer.toString(month)) 
+

                    ((date < 10) ? "0" + Integer.toString(date) : Integer.toString(date)) ;

            return  Integer.parseInt(hashString);

        }

    }

}

70



Appendix D – Source for building the model to predict energy consumption – with one factor

%matplotlib inline 

import numpy as np 

import pandas as pd 

import matplotlib.pylab as plt 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_absolute_error 

import seaborn as sns 

sns.set_style("darkgrid") 

sns.set_context("poster") 

def rolling_univariate_window(time_series, window_size):    

    shape = (time_series.shape[0] - window_size + 1, window_size)  

    strides = time_series.strides + (time_series.strides[-1],) 

    return np.lib.stride_tricks.as_strided(time_series, shape=shape, strides=strides) 

def build_rolling_window_dataset(time_series, window_size): 

    last_element = time_series[-1] 

    time_series = time_series[:-1] 

    X_train = rolling_univariate_window(time_series, window_size) 

    y_train = np.array([X_train[i, window_size-1] for i in range(1, X_train.shape[0])]) 

    

    return X_train, np.hstack((y_train, last_element)) 

def train_test_split(no_of_training_instances, X_all, y_all): 

    X_train = X_all[0:no_of_training_instances, :] 

    X_test = X_all[no_of_training_instances:, :] 

    y_train = y_all[0:no_of_training_instances] 

    y_test = y_all[no_of_training_instances:] 
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    return X_train, X_test, y_train, y_test 

 

def print_graph(X_all, X_test, y_all, y_test, y_pred): 

    training_size = X_all.shape[0] - X_test.shape[0] 

    x_full_limit = np.linspace(1, X_all.shape[0], X_all.shape[0]) 

    y_pred_limit = np.linspace(training_size+1, training_size + 1 + X_test.shape[0], 
X_test.shape[0]) 

    plt.plot(x_full_limit, y_all, label='actual', color='b', linewidth=1) 

    plt.plot(y_pred_limit, y_pred, '--', color='r', linewidth=2, label='prediction') 

    plt.legend(loc=0) 

    plt.show() 

data_set = pd.read_csv('/home/sajith/shani-project/datasets/consumptions.csv') 

data_set = data_set.values.flatten() 

window_size = 16 

training_set_size = 30 

X_all, y_all = build_rolling_window_dataset(data_set, window_size) 

X_train, X_test, y_train, y_test = train_test_split(training_set_size, X_all, y_all) 

lr = LinearRegression(normalize=True) 

lr.fit(X_train, y_train) 

y_pred = lr.predict(X_test)    

print "mean_absolute_error: %f" %(mean_absolute_error(y_test, y_pred)) 

print_graph(X_all, X_test, y_all, y_test, y_pred)
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Appendix E – Source code for building the prediction model with multiple
regression

%matplotlib inline 

import numpy as np 

import pandas as pd 

import matplotlib.pylab as plt 

from sklearn.linear_model import LinearRegression 

from sklearn.metrics import mean_absolute_error 

import seaborn as sns 

sns.set_style("darkgrid") 

sns.set_context("poster") 

def train_test_split(no_of_training_instances, X_all, y_all): 

    X_train = X_all[0:no_of_training_instances, :] 

    X_test = X_all[no_of_training_instances:, :] 

    y_train = y_all[0:no_of_training_instances] 

    y_test = y_all[no_of_training_instances:] 

    

    return X_train, X_test, y_train, y_test 

def print_graph(X_all, X_test, y_all, y_test, y_pred): 

    training_size = X_all.shape[0] - X_test.shape[0] 

    x_full_limit = np.linspace(1, X_all.shape[0], X_all.shape[0]) 

    y_pred_limit = np.linspace(training_size+1, training_size + 1 + X_test.shape[0], 
X_test.shape[0]) 

    plt.plot(x_full_limit, y_all, label='actual', color='b', linewidth=1) 

    plt.plot(y_pred_limit, y_pred, '--', color='r', linewidth=2, label='prediction') 

    plt.legend(loc=0) 

    plt.show() 
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data_set = pd.read_csv('/home/sajith/shani-project/datasets/summarized.csv') 

training_set_size = 30 

y_all = 
data_set['Total_Energy_Consumed_by_end_users_Swiss_controlblock'].values 

X_all = data_set[['year', 'date', 'month', 'season', 'publicHoliday']].values 

X_train, X_test, y_train, y_test = train_test_split(training_set_size, X_all, y_all) 

lr = LinearRegression(normalize=True) 

lr.fit(X_train, y_train) 

y_pred = lr.predict(X_test)    

print "mean_absolute_error: %f" %(mean_absolute_error(y_test, y_pred)) 

print_graph(X_all, X_test, y_all, y_test, y_pred)

Illustration Index

Figure 1.1 - Swiss Electricity Market in 2010 [2] 2
Figure 2.1: Wide Area Monitoring High Level Architecture [9] 10
Figure 2.2: Monthly End User Consumption [19] 11
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