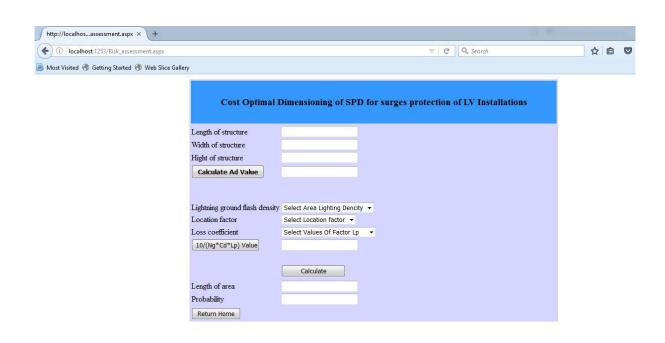
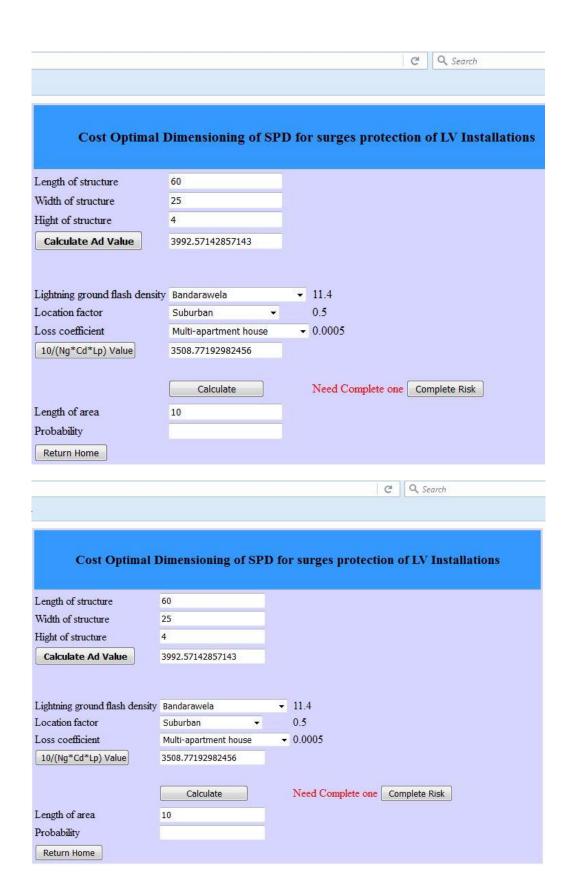
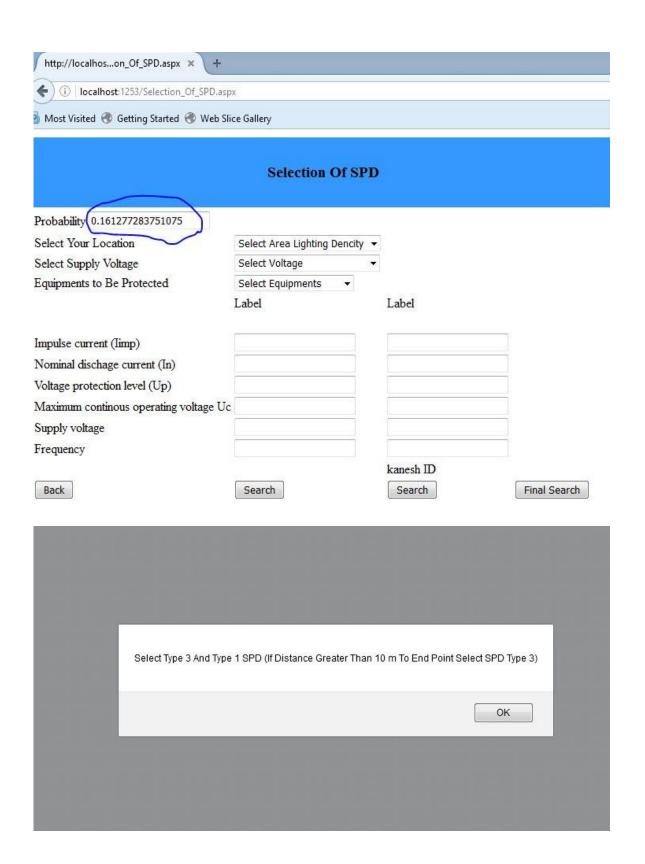
BIBLIOGRAPHY

- [1] Facility Electrical Protection, "How to select the Best Value Transient Voltage Surge Supressor for your Equipment," Erico, USA, 2002.
- [2] R Narayan, "A practical guide to select surge protective device," Erico Australia.
- [3] IEC 62305-1 Ed1.0, "Protection against lightning Part 1 General principles," IEC, 2006.
- [4] Samad Khan, Furse, Roger Lovegrove, "BEAMA Guide to Surge Protection Devices selection, application and theory," Beama Limited, 2014.
- [5] IEC 62305-4, Ed 1.0, "Protection against lightning Part 4 Electrical and Electronic system within structures," IEC, 2006.
- [6] IEC 62305-5, Ed 1.0, "Protection against lightning Part 5 Services," IEC, 2006.
- [7] T. Kisielewicz, C.Mazzetti, G.B Lo Piparo, B. Kuca, Z. Flisowski, "Electronic Apparatus Protection Against LEMP Surge Threat for the SPD Selection," IEEE, 2012.
- [8] Fred Grosz, "Transient voltage and Surge Protection," Southeast Region Workshop, 2011.
- [9] G.B. Lo Piparo, T. Kisielewicz, C. Mazzetti, A. Rousseau, "Procdure for selection of the SPD system according to the probability of damage," IEEE, 2015.
- [10] Gernot Finis, Martin Wetter, Thomas Meyer, "New Spark-gap Technology with Efficient Line-follow Current Suppression for the Protection of Powerful LV Distribution Systems," ICLP, 2016.

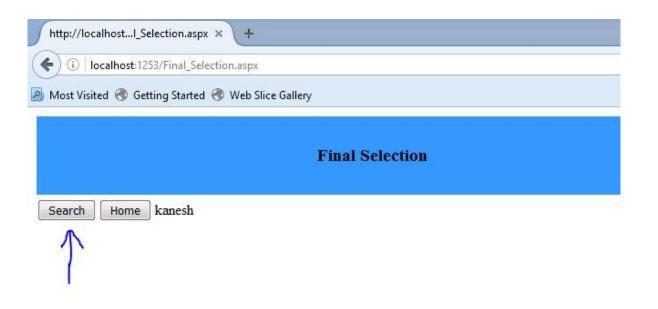
- [11] K.Kisielewicz, F. Fiamingo, Z.Flisowski, B. Kuca, G.B Lo Piparo, C.Mazetti, "Factors Influenceing the selection and Installation of Surge Protective Devices for Low Voltage Systems," IEEE, 2012.
- [12] IEC 62305-2, Ed 1.0, "Protection against lightning Part 2 Risk assessmnet," IEC, 2006.
- [13] K.H.M.S. Premalal, Nuwan Kumarasinghe, "Community Base Vulnerability Mapping for Lightning Strikes in Sri Lanka," Department of Meteorology, 2015.
- [14] Bruno vaa Beneden, "Varistors Ideal Solution to Surge Protection," Power Electronic Technology, 2003.
- [15] IEC 62305-3, Ed 1.0, "Protection against lightning Part 3 Physical damage to structures and life hazard," IEC, 2006.
- [16] A.J Surtees, A. Gillespie, A. Kern, A Rousseau, "Development of a risk assessemnet calculator," ICLP, 2004.
- [17] G.B Lo Piparo, T. Kisielewicz, C. Mazzetti, A. Rousseau, "An approach to assess the probability of damage when a coordinated SPD system is installed," IEEE, 2014.
- [18] F.Fiamingo, C.Mazzetti, G.B Lo Piparo, A. Rousseau, "A method to dnstallation supplied by power linescal itning overvoltages of electrietermine the need of SPD for the protection against ligh," ICLP, 2008.
- [19] Alain Rousseau. Pierre Gruet, "A application of IEL 62305-2 risk analysis standard in," International Symposium on light protection, 2014.

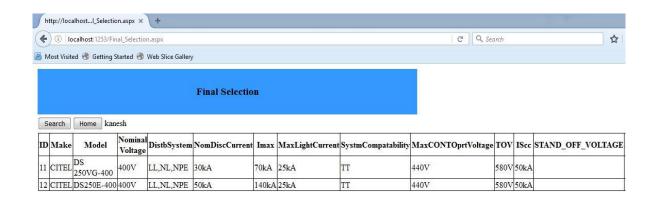

Appendix: A

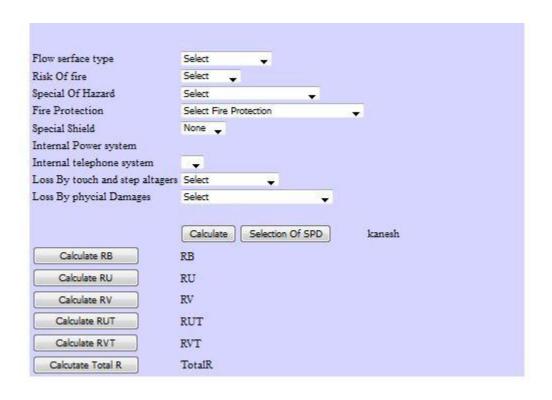

USER FRIENDLY SOFTWARE SOLUTION


	host:1253/Login.aspx ×	+					
Most Visited Getting Started Web Slice Gallery							
Co	st Ontimal Diame	nsioning Of SPD For Surges Proctions Of LV Instrilation					
C	за Оришат Бташс	Risk Assessment (Login)					
** **							
User Name Password							


Supervised by Dr. W.D Asanka Rodrigo K.K Dadallage


Index No 128857N MSc/PG Diploma Electrical Engineering





	Complete Ri	sk Ass
Height		
Width		
Length		
Number Of People		
Shield At Structure		
Shield Internal		
Line Location Factor	Select Location Factor	
LPS	Select LPS . L	PS
Label	Select Area Linl _	
Soild Resistivity		
Length Of Power Line		
Cable Lacation	Select Cable Lacation	
Height Of Power Line		
Transformer	Select	Ţ
Line Location Factor	Select	- 4
Line Environment Factor	Select Location factor	Ţ
Line Shielding	Select Shield 😛	
Internal Wiring Precotions		
Withstand Of internal System	Select 🛶	
Cordination Protection	Select 🕌	
Length Of Telecom Line		
Height Of Telecom Line		
Line Location Factor	Select	J
Line environment Factor	Select Location factor	Stir.
line Shilding	Select sheild 💂	mases)
Internal Wiring Preportion		
Widthstand of Internal Syatem	Select 🔟	
Cordinator SPD Protetion	-	

DATA TABLE FOR RISK CALCULATION

Value of collection area depending on the evaluation method Table A.1

	Graphic	Structure	G: (2.5)	Protrusion
	method	(Max)	Structure (Min)	(Hp)
Structure				
Dimension				
m				
(L,W,H)				
m²	Ad	Ad max	Ad min	Ad'

$$A_d = L x W + 6 x H x (L + W) + 9 x \pi x H^2$$

$$A_d' = 9 \times \pi \times (H_p)^2$$

Length	70
Width	30
Height	40
Ad	71357.14286
Protrusion	40
Ad'	45257.14286

Location factor Cd Table A.2

Location factor	Cd	Comments
Object surrounded by higher objects or tree	0.25	Higher objects
Object surrounded by objects or trees of the		
same height or smaller	0.5	Same/smaller
Isolated object: no other objects in the vicinity	1	Isolated

Collection area Ai and Al depending on the service characteristics Table A.3

	Aerial	Buried	Aerial
Al	(Lc - 3(Ha + Hb)) 6Hc	(Lc - 3(Ha + Hb))√ρ	Buried
Ai	1000 Lc	25 Lc √ρ	

1

Lc	Length of the service section (m)	1000
На	Hight of the structure connected at end "a" (m)	2
Hb	Hight of the structure connected at end "b" (m)	2
Нс	Hight of the service conductors above groung (m)	6
ρ	Resistivity of soil (mili ohm)	500
Al (Arial)	Collection area of flashes stricking the service	35568
Ai (Arial)	Collection area of flashes to ground near the service	1000000
Al(Buried)	Collection area of flashes stricking the service	494000
Ai (Buried)	Collection area of flashes to ground near the service	559016.9944

Transformer factor Ct Table A.4

Transformer	Ct	Comments
Service with two winding trans former	0.2	Transformer
Service only	1	None

Environment factor Ce Table .5

Environment			Ce
Urban with tall			
building *			0
Urban			0.1
Suburban			0.5
Rural			1
*	Height of the building higher than 20m		
	Height of the building ranging between		
**	10m to 20m		
***	Height of the building lower than 10m		

Typical mean values of Lt , Lf and $Lo\ Table\ C.1$

Type of structur	Lt				
All type - (perso	All type - (persons inside the building)				
All type - (perso	ons outside the building)	0.01			
Type of structur	e	Lf			
Hospital, hotels	0.1				
Industrial, comr	0.05				
Public entertair	Public entertaintment, churches, museum				
Other		0.01			
Type of structur	Lo				
Risk of explosio	n	0.1			
Hospitals		0.001			

Values of reduction factors ra and ru as a function of the type of surface of soil or floor Table $C.2\,$

Type of surface	contact resistance	r₄and ru		
Agricultural, concrete	Lese than 1	0.01		
Marble, ceramic	1 to 10	0.001		
Graval, moquette, carpets	10 to 100	0.0001		
Asphalt, linoleum, wood Greater than 100		0.00001		
Values measured between a 400cm electrode compressed with force of 500n				

Values of reduction factor ${\rm rp}$ as a function of provision taken to reuce the consequence of fire Table C.3

Provision				r _p			
No provision				1			
One of the follo	One of the following provision: extinguishers; fixed manualy operated						
extinguishing in	extinguishing installation; manual alarm installation, hydrants, fire proof						
compartments; protected escape routs							
One of the following provision; fixed aautomatically operated							
extinguishing i	extinguishing installations;automatic alarm installations						
Only if protecte	Only if protected against overvoltage and other damages and if						
firemen can arri	iremen can arrive in less than 10 min						

Values of reduction factor rf as function of risk of fire of structure Table C.4

Risk of fire	rf	
Explosioin	1	
High	0.1	
Ordinary	0.01	
Low	0.001	
None	0	

KS1 = KS2 = 0.12 * w			
w = Mesh width	9		
KS1	1.08		
Soil resistivity	Assumed 500 Ohm		
KS4=1.5/Uw	Uw = rated implulse withsta	and voltageof system to b	e protected
Uw	2.5		
KS4=	0.6		

Uw (kV)	
Sensitive	0.6
Sensitive	1
Electronic	1.5
Electrical	2.5
Machinery	4
Other	6

Values of probability PA that a flash to the structure will cause injury to living being Table B.1

Protection measures			PA	
No protection measures			1	None
Electrical insullation of expected down conductor			0.01	Down conductor
Effective soil equippotentialization		0.01	Soil equipote	
Warning notice			0.1	Notice
			0	Fence

Values of probability PB depending on the protection measures to reduce physical damage Table $B.2\,$

Characteristic	c of structur	e				Class of LPS	PB
Structure not	protected b	by LSP				None	1
Structure pro	tected by LS	SP				IV	0.2
						III	0.1
						II	0.05
						I	0.02
Structure wit	h an air tern	ninationsys	tem confirmin	g to LPS 1 ar	nd a continous metal or	Air terminal	0.01
reinforced co	ncrete fram	nework acti	ng as a natural	down cond	uctor system		
Structure wit	h a metal ro	of of an air	termination sy	stem,		Metal roof +Air terminal	0.001

Values of the probability PSPD as a function of LPL for which SPDs are designed Table $B.3\,$

LPL			Pspd	Comments
No coordinate	ed SPD prot	ection	1	None
III - IV			0.03	III- IV
II			0.02	П
I			0.01	I

Probability PC that with a flash to a structure will cause failure of internal systems PC = PSPD

Value of probability PMS as a function of factor KMS Table B.4

Kms	P _M S
0.4	1
0.15	0.9
0.07	0.5
0.035	0.1
0.021	0.01
0.016	0.005
0.015	0.003
0.014	0.001
0.013	0.0001

Value of factor KS3 depending on internal wiring Table B.5

Type of internal wiring	Ksа	Comments
Unshielded cable- no routing precaution in order to avoid loop	1	None
Unshielded cable- routing precaution in order to avoid large loop	0.2	Unshielded
Unshielded cable- routing precaution in order to avoid loop	0.02	Unshielded
Shielded cable with shield resistance 5 <rs< 20="" =="" km<="" ohm="" td=""><td>0.001</td><td>Shield</td></rs<>	0.001	Shield
Shielded cable with shield resistance $1 < RS < = 5$ ohm/Km	0.0002	Shield
Shielded cable with shield resistance RS < = 1 ohm/Km	0.0001	Shield

Value of the probability PLD depending on the resistance RS of the cable screen and the impulse withstand voltage UW of the equipment Table B.6

Uw	S < RS <= 20	1< Rs <= 5	Rs<= 1
kV	ohm/km	ohm/km	ohm/km
1.5	1	0.8	0.4
2.5	0.95	0.6	0.2
4	0.9	0.3	0.04
6	0.8	0.1	0.02
Rs (ohm/km) resistance of the cable shield			

PLD=1 for unshielded cable

Values of factor h increasing the relative amount of loss in presence of a special hazard Table C.5

Kind of special hazard	h
No special hazard	1
Low level of panic (e.g. a structure limited to two floors and the number of	2
persons not greater than 100	
Average level of panic (e.g. structures designed for cultural of sport events	
with a	5
number of participants between 100 to 1000 persons	
Difficulty of evacuation (e.g. structures with immobilized persons, hospitals)	5
High level of panic (e.g. structured designed for cultural or sport events with a	10
number of participants greater than 1000 person	
Hazard for surroundings or environment	20
Contamination of surroundings or environment	50

Typical mean values of Lf and Lo Table ${\rm C.6}$

Type of service	Lf	Lo
Gas, water	0.1	0.01
TV, TLC, Power supply	0.01	0.001

Typical mean values of Lf , Lt and Lo Table $C.7\,$

Type of structure	Lt
All type - Inside buildings	0.0001
All type - Outside buildings	0.01
Type of structure	Lf
Hospital, Industrial, museum, agriculture	0.5
Hotel, school, office, church, public entertainment	0.2
economic buildings	
Others	0.1
Type of structure	Lo
Risk of explosion	0.1
Hospital, industrial, office, hotel, economic building	0.01
Museum, agriculture, school, church, public entertainment	0.001
Others	0.0001

APPENDIX C