DEVELOPMENT OF A SURGE PROTECTOR SUITABLE FOR EQUATORIAL BELT COUNTRIES

N.A.A.N.Dilrukshi (149351J)

Degree of Master of Science in Industrial Automation

Department of Electrical Engineering

University of Moratuwa Sri Lanka

July 2017

DEVELOPMENT OF A SURGE PROTECTOR SUITABLE FOR EQUATORIAL BELT COUNTRIES

Nissanka Arachchi Appuhamilage Nadeesha Dilrukshi (149351J)

Dissertation submitted in partial fulfilment of the requirements for the Degree Master of Science in Industrial Automation

Department of Electrical Engineering

University of Moratuwa Sri Lanka July 2017

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

Signature:		Date:
The above candidate has car supervision.	ried out research for the Maste	ers Dissertation under our
Signature of the supervisor:	Prof. J.R. Lucas	Date :
Signature of the supervisor:	Dr. D.P. Chandima	Date :

DEDICATION

I dedicate this thesis to Mr. Buddhika Ranatunga, my husband for his endless encouragement and patience and to Mr. Nissanka & Mrs.Ramyalatha, my parents for earning an honest living for us and for supporting and encouraging me, to believe in myself and for nursing me with affections and love and their dedicated partnership for success in my life.

ACKNOWLEDGEMENTS

Firstly, I would like to express my sincere gratitude to my advisors Prof. J.R. Lucas and Dr. D.P. Chandima for the continuous support of my MSc study and related research, for his patience, motivation, and immense knowledge. Their guidance helped me in all the time of research and writing of this thesis.

Besides my advisors, I would like to thank Mrs. Janaki Athuraliya and Mr. Nihal Kularathne, for their insightful comments and encouragement, but also for the hard questions which encouraged me to widen my research from various perspectives.

My sincere thanks also goes to my colleagues at the Electronic Division of Arthur C Clarke Institute for Modern Technologies who provided me an opportunity to join their team as Research Engineer, and who gave access to the laboratory and research facilities. Without their precious support it would not be possible to conduct this research.

Lastly, I should thank many individuals, friends and colleagues who have not been mentioned here personally in making this educational process a success. I could not have made it without your support.

ABSTRACT

In most tropical countries like Sri Lanka, lightning activity is high and can cause severe damage to equipment within buildings. Thus lightning surges should be prevented from entering sensitive equipment by installing high quality surge protection devices. Traditionally, surge protection circuits use non-linear devices to clamp the overvoltage. However, typical non-linear devices have low relatively short duration energy absorption ratings and cause the life of the surge protection device to decrease.

As it is known that supercapacitors have large continuous energy storage capabilities, a supercapacitor based surge energy absorption technique has been developed by combining a multi-winding magnetic component with a typical non-linear device in a novel configuration. This research presents an overview of new supercapacitor technique and the basis for selecting the magnetic core required so that the supercapacitor sub-circuit works effectively.

Selection of the magnetic core is critical for the success of the technique, since the combination of the leakage and magnetizing components of the multi-winding magnetic core plays a dominant role. Experimental results generated using a lightning surge simulator with surge capability up to 6 kV/3 kA are used to validate the results. Overall performance of this technique with optimized magnetics is compared with a typical commercially available surge protector, which is practically used to safeguard electronic systems against transient over-voltage related power quality issues.

This technique utilizes a multi-winding transformer, common surge protector devices such as metal oxide varistors combined with a supercapacitor sub-circuit to absorb part of the surge energy usually expected to dissipate within the metal oxide varistor and improve the life of the surge protective device. Also the output clamping voltage is controlled to a lower value to give better protection for the equipment.

Test results clearly indicate, the supercapacitor assisted surge protective device has a much higher energy absorption capacity than tested commercial products and can be used in commercial surge protectors with better performance than traditional surge protectors with higher component counts.

Keywords: Lightning Protection, Supercapacitor, Metal Oxide Varistor, Non Linear Device

TABLE OF CONTENTS

DECLARATION OF THE CANDIDATE & SUPERVISOR	i
DEDICATION	ii
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	vi
LIST OF FIGURES	viii
LIST OF TABLES	X
LIST OF ABBREVIATIONS	X
LIST OF APPENDICES	X
1 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	4
1.2.1 Typical Surge protector circuit	4
1.2.2 Associated Problems	4
1.2.3 Problem statement	5
1.3 Typical designs of SPDs	6
1.4 Objectives	7
2 LITERATURE REVIEW	8
3 METHODOLOGY	20
3.1 Background	20
3.2 Design Approach	20
3.3 Selection of components	22
3.3.1 Characteristics of MOVs	22
3.3.2 Voltage build up across MOVs	22
3.3.3 Voltage buildup across super capacitors	24
4 SYSTEM DEVELOPMENT	28
4.1 Design Overview	28
4.2 Complete Design Circuit & Its Operation	28
4.3 Impact of The Supercapacitor Subcircuit and The Magnetic Co	omponent30
5 RESULTS AND ANALYSIS	32

5	.1	Gei	neral Mathlab simulation results	32
5	.2	Ma	tlab simulation results for the complete circuit	39
5	.3	Ene	ergy Calculation	.45
	5.3.	.1	By using powdered core as a transformer	.45
	5.3.	.2	By using ferrite core as a transformer	.48
5	.4	Ene	ergy Comparison of Two Different Cores	.49
5	.5	Pro	totype implementation of the prosed system	50
	5.5.	.1	Differential Mode	50
	5.5.	.2	Common Mode	51
6	CO	NCL	LUSION	52
RE	FERI	ENC	ES	.54
Apj	pendi	ix A		55
Apj	pendi	ix B		.56
App	pendi	ix C		.69
App	pendi	ix D		.71
Appendix E				
Apj	Appendix F80			

LIST OF FIGURES

		Page
Figure 1.1	Propagation of lightning channel	1
Figure 1.2	Lightning distribution in the world	2
Figure 1.3	Percentage increase in storm surge zone, SAR Region	2
Figure 1.4	Typical Surge Protective Device	4
Figure 1.5	Typical designs of SPDs	6
Figure 2.1	Histograms of Annual Damage by lightning strike	9
Figure 2.2	TT wiring system	10
Figure 2.3	Two types of SPD connections in a TT wiring system	10
Figure 2.4	Concept of zonal protection	10
Figure 2.5	Two current test waveforms	11
Figure 2.6	Multiple MOV based SPD	14
Figure 2.7	Exploded multiple MOV based SPD module	15
Figure 2.8	SPD internal fire	15
Figure 2.9	Structural comparison of capacitors	16
Figure 2.10	Ferrite Core Characteristic	18
Figure 3.1	Flow chart of testing of the voltage protection level	21
Figure 3.2	MOV - Epcos - S20 characteristic for 6 kV	23
Figure 3.3	MOV - B722 PANASONIC characteristic for 6 kV	23
Figure 3.4	Terminal voltage development versus number of surges	24
Figure 3.5	Terminal voltage development versus number of surges	25
Figure 3.6	Terminal voltage development versus number of surges	26
Figure 3.7	Terminal voltage development versus number of surges	26
Figure 4.1	Circuit Diagram – Differential Mode	28
Figure 4.2	Differential and common mode surges	29
Figure 4.3	Mathematical relationship	29
Figure 4.4	Possible Sub Circuits	30
Figure 4.5	TT wiring system	31
Figure 4.6	Design Circuit – Common Mode	31
Figure 5.1	Capacitor charging curves	33

Figure 5.2	1.2/50us - Normalized open circuit voltage	34
Figure 5.3	1.2/50us – Fourier transform of open circuit voltage	34
Figure 5.4	8/20us - Normalized short circuit current	35
Figure 5.5	8/20us – Fourier transform of short circuit current	35
Figure 5.6	Impact on an RC circuit	36
Figure 5.7	MOV V-I observation curve	37
Figure 5.8	MOV Log scale V-I curve	37
Figure 5.9	Current and voltage variation of MOV	38
Figure 5.10	Power variation for different supercapacitors	38
Figure 5.11	Energy variation for different supercapacitors	39
Figure 5.12	Primary and secondary winding current variation	40
Figure 5.13	Primary voltage variation	40
Figure 5.14	Sub-circuit voltage variation	41
Figure 5.15	Secondary voltage variation	41
Figure 5.16	Open circuit voltage (No-load)	42
Figure 5.17	Sub-circuit voltage variation for different capacitors	42
Figure 5.18	Sub-circuit voltage variation for different resistors	43
Figure 5.19	Sub-circuit voltage variation for different combinations	43
Figure 5.20	Power distribution across NLD and sub circuit	44
Figure 5.21	Power-Total, across NLD and sub circuit with magnetic Core	44
Figure 5.22	Current, voltage & power waveforms across MOV	45
Figure 5.23	Total current, voltage & power waveforms across MOV	45
Figure 5.24	Power across MOV	46
Figure 5.25	Total power at the input	46
Figure 5.26	Power across MOV	47
Figure 5.27	Total power at the input	47
Figure 5.28	Total power at the input and across MOV	48
Figure 5.29	Total power at the input and across MOV	49
Figure 5.30	Proposed design of SPD (Differential Mode)	50
Figure 5.31	Proposed design of SPD (Common Mode)	51

LIST OF TABLES

Appendix - E

Appendix - F

T 11 11 C	· CONTO 1	Page
•	arison of TVS devices	5
Table 2.1 Impuls	se current waveforms	11
Table 2.2 The cur	rrent handling capacity of SPDs	11
Table 3.1 Compa	arison of two types of MOVs	22
Table 3.2 Compa	arison of clamping voltage	22
Table 3.3 Voltag	ge build up across 1F-2.5 V SC	24
Table 3.4 Voltag	e build up across 5F-2.7 V SC (Maxwell)	25
Table 3.5 Voltag	ge build up across 5F-2.7 V SC(DCN)	25
Table 3.6 Voltag	ge build up across 150F-2.7 V SC	26
Table 5.1 Energy	levels of powdered/ferrite cores	49
Table 5.2 Output voltage at load end (Differential mode)		50
Table 5.3 Output	voltage at load end (Common mode)	51
LIST OF ABB	REVIATIONS	
Abbreviation	Description	
BBD	Bidirectional Break-Over Diode	
HV	High Voltage	
MOV	Metal Oxide Varistor	
NLD	Nonlinear Device	
SC	Supercapacitor	
LIST OF APP	ENDICES	
Appendix	Description	Page
Appendix - A	Cost of implemented units	55
Appendix - B	Data sheet (MOVs)	56
Appendix - C	Data sheet (Supercapacitors)	69
Appendix - D	Data sheet (Powdered core)	71

Energy calculation data (Powdered core)

Energy calculation data (Ferrite core)

72

80