REFERENCES

- [1] Jinn-Chang Wu, Hurng-LiahngJou, Kuen-Der Wu, and Shiue-Jung Jan "Three-Arm AC Automatic Voltage Regulator" *IEEE Trans. on Industrial Electronics* ,vol.58,no.2,February ,2011.
- [2] Daolian Chen and Yanhui Chen "Step-up AC Voltage Regulators with High-Frequency Link" *IEEE Trans. Power Electronics*, vol.28, no.1, January 2013.
- [3] N. Vazquez, A. Velazquez, C. Hernandez, E. Rodríguez and R. Orosco "A Fast AC Voltage Regulator" *Electronics department Instituto Tecnológico de Celaya Celaya*, Mexico, 2008.
- [4] Nihal Kularatna & Chandani Jindasa" Analysis and design aspect of a series power semiconductor array with digital waveform control capability for single phase AC voltage regulators " *The University of Waikato, Hamilton, New Zealand,* July 2011.
- [5] P. K. Banerjee1, M. A. Choudhury and GolamToahaRasul"AC Voltage Regulators by switch mode Buck-Boost voltage controller" 3rd International Conference on Electrical & Computer Engineering ICECE 2004, 28-30 December 2004, Dhaka, Bangladesh
- [6] Dugan, R., McGranaghan, M., Santoso, S. and Beaty, H.W" Electrical Power Systems Quality", 2nd ed. New York: McGraw-Hill 2004.
- [7] Atul Singh and Jabir VS "Voltage Fed Full Bridge DC-DC and DC-AC Converter for High Frequency Inverter Using C2000" Application Report SPRABW0B May 2014 Revised June 2015
- [8] *Hand book of transistor circuit*, 1st ed., Howard W.Sans & Co., Inc., Indianapolish, Indiana 1963, pp.207-223.
- [9] Jacob Millman,Ph.D , Christos C Halkias ,Ph.D "Untuned Amplifiers" *Electronics Devices & Circuits*,International Student ed. New York :McGraw-Hill book company ,1967,pp 450-689.
- [10] A. Averberg, A,Mertens, "Analysis of a Voltage-fed Full Bridge DC-DC Converter in Fuel Cell Systems" Power Electronics Specialists Conference, 2007. PESC 2007. IEEE.
- [11] H.Wu, D.Lin, D. Zhang, K. Yao, J.Zhang, "A Current Mode Control Technique with Instantaneous Inductor Current Feedback for UPS Inverter" *IEEE Trans.* 1999.
- [12] N.Mohan, T.M.Undeland, and W.P.Robbins "Switch-Mode Inverters" *Power Electronics Converter, Applications and Design*, 3rd ed.Delhi: Gurukripa Enterprises, 2011, pp.200-290.

- C.J.Hill.(1998,March 15).Switch mode power supply,[online].
 Available : http://pe2bz.philpem.me.uk/Power/-%20Inverters/D-101-Convertersetc/smps.htm
- [14] Giangrandi.ch (2014, August 01) *Main transformers calculation*,[online]. Available: http://www.giangrandi.ch/electronics/trafo/trafo.shtml
- [15] Daycounter ,Inc. Engineering services (2016, March 15) Snubber design, [online]. Available:http://www.daycounter.com/Calculators/Snubbers/Snubber-Design-Calculator.phtml
- [16] Electronics Tutorials.(2016,January 15) *Low pass filter design*,[online]. Available: http://www.electronics-tutorials.ws/filter/filter_2.html
- [17] V.K.Mehta "Transistor Audio Power Amplifiers" *Principles of Electronics*, 1st ed. New Delhi ,S.Chand & company Ltd, 1999, pp.296-375.
- [18] Atul Singh and Jabir VS, "Voltage Fed Full Bridge DC-DC and DC-AC Converter for High-Frequency Inverter Using C2000" Texas Instruments, SPRABW0B May 2014 Revised June 2015.

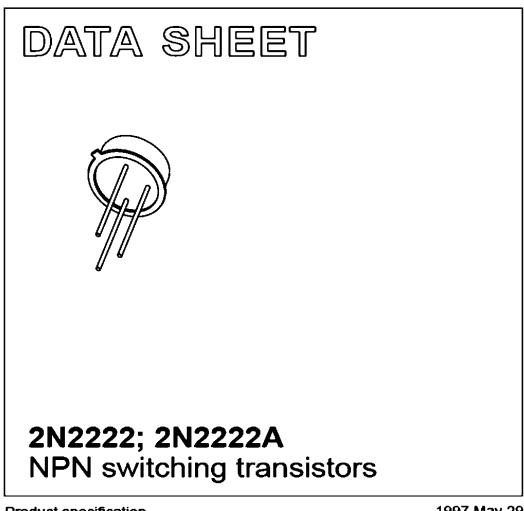
Appendix A

Cost of implemented unit

Quantity	Price
1	20cts
3	60cts
3	60cts
1	20cts
1	20cts
2	Rs.2.00
2	Rs.20.00
2	Rs.2.00
2	Rs.1.00
2	Rs.2.00
2	Rs.10.00
1	Rs.10.00
1	Rs.20.00
1	Rs.10.00
1	Rs.50.00
2	Rs.20.00
2	Rs.10.00
4	Rs.4.00
4	Rs.12.00
2	Rs.4.00
1	Rs.10.00
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

10 kΩ	1	Rs.10.00
250 kΩ	1	Rs.10.00
Transistors		
2N2222	1	Rs.25.00
BD131	2	Rs.70.00
2N3055	2	Rs.100.00
BU808DFI	2	Rs.150.00
Bu806 (optional)	2	Rs.100.00
Total		<u>Rs.631.80</u>

Туре	Quantity	Price
Transformer		
260/5V 100mA	1	Rs.100.00
230/12V 100mA	1	Rs.100.00
Driver 9 /12/12 2A	1	Rs.500.00
110V -250V/19V SMPS	1	Rs.1200.00
	Others	
Circuit board	2	Rs.100.00
Bolt and nut ,lead etc.		Rs.100.00
Total		Rs.2100.00
10000		<u>K3.2100.00</u>


Total cost excluding push pull transformer, casing, labour etc is **Rs.2731.80**

Additional cost involves in making Push-pull transformer and amount of power required. Normally BU808DFI can withstand for 8A at 400V with proper cooling and able to deliver approximately 1kW. The cost of the 1kW Regulator may be around Rs.15000 in the common market having their own weakness such as noise, frequency disturbance, time response for fluctuationetc.

For the information: To overcome the flux walk, transformer was designed for testing purpose of this project. Approximately Four square inch core was selected with primary winding of 2000 turns using enamel wire 36SWG with DC resistance of approximately 200 Ω , for each transistor (Total 4000 turn, 400 Ω) and secondary turns of 40000 turns with the same wire, to give out put voltage of 350V, when each collector voltage is at 200Vswing. This is done to reduce the maximum DC current flow in the primary winding about 1.5A (300V/200 Ω). Since rectified voltage would be at peak level with capacitive filters. It is aware that due to the high resistance of the winding, output is less than expected. To increase the efficiency a large core has to be used with thick winding and heat sinks, cooling fan etc. The cost involved approximately Rs. 2500.

Appendix B

DISCRETE SEMICONDUCTORS

Product specification Supersedes data of September 1994 File under Discrete Semiconductors, SC04 1997 May 29

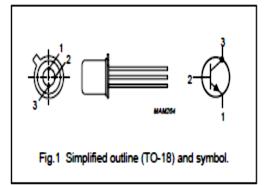
Philips Semiconductors

2N2222; 2N2222A

FEATURES

- High current (max. 800 mA)
- Low voltage (max. 40 V).

APPLICATIONS


· Linear amplification and switching.

DESCRIPTION

NPN switching transistor in a TO-18 metal package. PNP complement: 2N2907A.

PINNING

PIN	DESCRIPTION	
1	emitter	
2	base	
3	collector, connected to case	

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter			
	2N2222		-	60	v
	2N2222A		-	75	v
V _{CEO}	collector-emitter voltage	open base			
	2N2222		-	30	v
	2N2222A		-	40	v
<u>ى</u>	collector current (DC)		-	800	mA
Ptot	total power dissipation	T _{amb} ≤ 25 °C	-	500	mW
h _{FE}	DC current gain	I _C = 10 mA; V _{CE} = 10 V	75	-	
f _T	transition frequency	I _C = 20 mA; V _{CE} = 20 V; f = 100 MHz			
	2N2222		250	-	MHz
	2N2222A		300	-	MHz
tor	tum-off time	I _{Con} = 150 mA; I _{Bon} = 15 mA; I _{Boff} = -15 mA	-	250	ns

2N2222; 2N2222A

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _{CBO}	collector-base voltage	open emitter			
	2N2222		-	60	V
	2N2222A		-	75	V
V _{CEO}	collector-emitter voltage	open base			
	2N2222		-	30	V
	2N2222A		-	40	V
VEBO	emitter-base voltage	open collector			
	2N2222		-	5	V
	2N2222A		-	6	V
lc	collector current (DC)		-	800	mA
См	peak collector current		-	800	mA
ВМ	peak base current		-	200	mA
Ptot	total power dissipation	T _{amb} ≤ 25 °C	-	500	mW
		$T_{case} \le 25 \ ^{\circ}C$	-	1.2	W
T _{stg}	storage temperature		-65	+150	°C
Tj	junction temperature		-	200	°C
Tamb	operating ambient temperature		-65	+150	°C

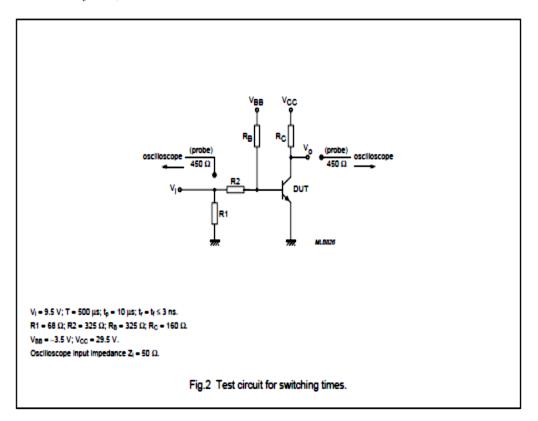
THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th J-a}	thermal resistance from junction to ambient	in free air	350	K/W
R _{th Jc}	thermal resistance from junction to case		146	K/W

2N2222; 2N2222A

CHARACTERISTICS

T_J = 25 °C unless otherwise specified.

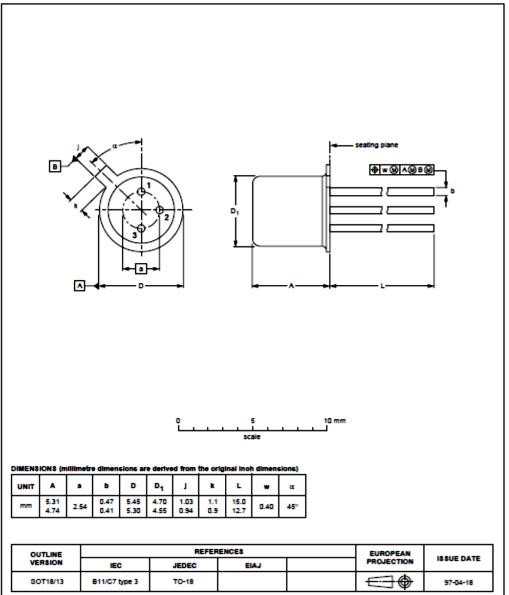

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX	UNIT
I _{CBO}	collector cut-off current				
	2N2222	IE = 0; VCB = 50 V	-	10	nA
		I _E = 0; V _{CB} = 50 V; T _{amb} = 150 °C	-	10	μA
I _{CBO}	collector cut-off current				
	2N2222A	I _E = 0; V _{CB} = 60 V	-	10	nA
		I _E = 0; V _{CB} = 60 V; T _{amb} = 150 °C	-	10	μA
I _{EBO}	emitter cut-off current	I _C = 0; V _{EB} = 3 V	-	10	nA
h _{FE}	DC current gain	I _C = 0.1 mA; V _{CE} = 10 V	35	-	
		I _C = 1 mA; V _{CE} = 10 V	50	-	
		I _c = 10 mA; V _{ce} = 10 V	75	-	
		I _C = 150 mA; V _{CE} = 1 V; note 1	50	-	
		Ic = 150 mA; Vce = 10 V; note 1	100	300	
hre	DC current gain	Ic = 10 mA; VcE = 10 V; Tamb = -55 °C			
	2N2222A		35	-	
hre	DC current gain	Ic = 500 mA; VcE = 10 V; note 1			
	2N2222		30	_	
	2N2222A		40	_	
VCEsat	collector-emitter saturation voltage				
	2N2222	Ic = 150 mA; Ig = 15 mA; note 1	-	400	mV
	LINE CONTRACTOR OF	Ic = 500 mA; Ig = 50 mA; note 1	-	1.6	V
VCEsat	collector-emitter saturation voltage				
	2N2222A	Ic = 150 mA; Is = 15 mA; note 1	-	300	mV
		Ic = 500 mA; Ig = 50 mA; note 1	-	1	V
VBEsat	base-emitter saturation voltage				
	2N2222	I _c = 150 mA; I _B = 15 mA; note 1	-	1.3	V
		I _c = 500 mA; I _B = 50 mA; note 1	-	2.6	V
VBEsat	base-emitter saturation voltage				
	2N2222A	I _C = 150 mA; I _B = 15 mA; note 1	0.6	1.2	v
		I _C = 500 mA; I _B = 50 mA; note 1	-	2	V
Cc	collector capacitance	I _E = i _e = 0; V _{CB} = 10 V; f = 1 MHz	-	8	pF
C _e	emitter capacitance	I _C = i _c = 0; V _{EB} = 500 mV; f = 1 MHz			
	2N2222A		-	25	pF
fT	transition frequency	I _C = 20 mA; V _{CE} = 20 V; f = 100 MHz			
	2N2222		250	-	MHz
	2N2222A		300	-	MHz
F	noise figure	$I_{c} = 200 \ \mu A; V_{CE} = 5 \ V; R_{s} = 2 \ k\Omega;$			
	2N2222A	f = 1 kHz; B = 200 Hz	-	4	dB

2N2222; 2N2222A

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT	
Switching	Switching times (between 10% and 90% levels); see Fig.2					
t _{on}	tum-on time	I _{Con} = 150 mA; I _{Bon} = 15 mA; I _{Boff} = -15 mA	-	35	ns	
ta ta	delay time		-	10	ns	
ţ	rise time		-	25	ns	
t _{off}	tum-off time		-	250	ns	
t,	storage time]	-	200	ns	
t _r	fall time]	-	60	ns	

Note

1. Pulse test: $t_p \le 300 \ \mu s; \ \delta \le 0.02.$


SOT18/13

NPN switching transistors

2N2222; 2N2222A

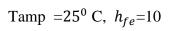
PACKAGE OUTLINE

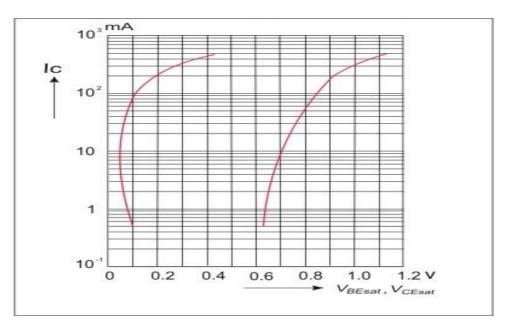
Metal-can cylindrical single-ended package; 3 leads

2N2222; 2N2222A

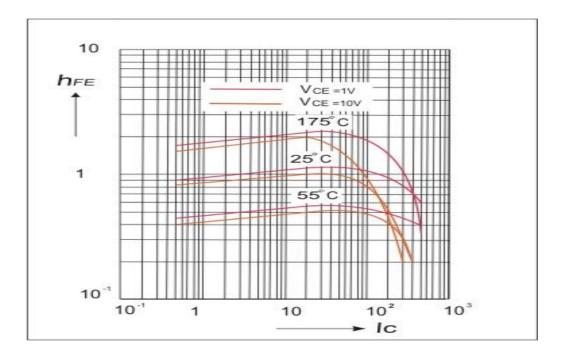
DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	
more of the limiting values of the device at these or at	a accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or may cause permanent damage to the device. These are stress ratings only and operation any other conditions above those given in the Characteristics sections of the specification limiting values for extended periods may affect device reliability.
Application information	
Where application informat	ion is given, it is advisory and does not form part of the specification.

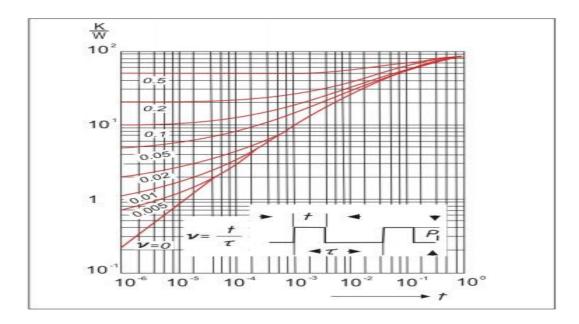

LIFE SUPPORT APPLICATIONS

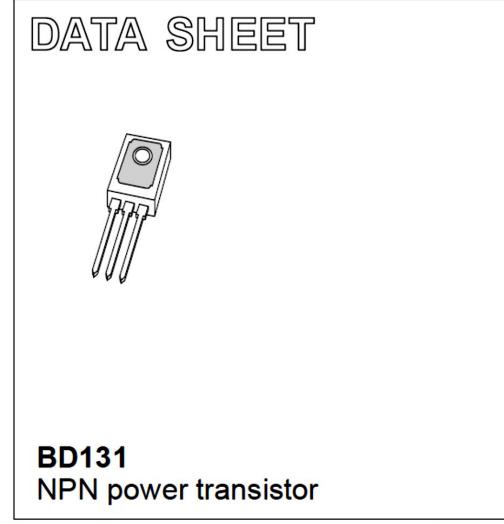

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

Rating and characteristics curves


Turn off time= 300ns

Noise fig 4db




DC current gain

Permissible load

DISCRETE SEMICONDUCTORS

Product specification Supersedes data of 1997 Mar 04 1999 Apr 12

Philips Semiconductors

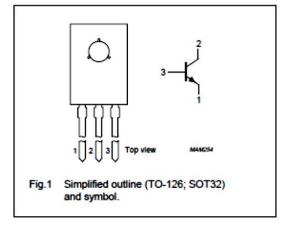
BD131

NPN power transistor

FEATURES

- · High current (max. 3 A)
- Low voltage (max. 45 V).

APPLICATIONS


· General purpose power applications.

DESCRIPTION

NPN power transistor in a TO-126; SOT32 plastic package. PNP complement: BD132.

PINNING

PIN	DESCRIPTION
1	emitter
2	collector, connected to metal part of mounting surface
3	base

LIMITING VALUES

In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
VCBO	collector-base voltage	open emitter	-	70	V
VCEO	collector-emitter voltage	open base	-	45	V
VEBO	emitter-base voltage	open collector	-	6	V
lc	collector current (DC)		-	3	Α
CM	peak collector current		-	6	Α
BM	peak base current		-	0.5	A
Ptot	total power dissipation	T _{mb} ≤ 60 °C	-	15	W
T _{stg}	storage temperature		-65	+150	°C
т	junction temperature		-	150	°C
Tamb	operating ambient temperature		-65	+150	°C

85

NPN power transistor

BD131

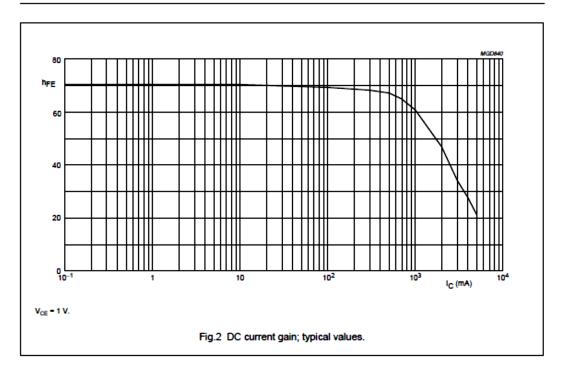
THERMAL CHARACTERISTICS

SYMBOL	PARAMETER	CONDITIONS	VALUE	UNIT
R _{th J-a}	thermal resistance from junction to ambient	note 1	100	K/W
R _{th J-mb}	thermal resistance from junction to mounting base		6	K/W

Note

1. Refer to TO-126; SOT32 standard mounting conditions.

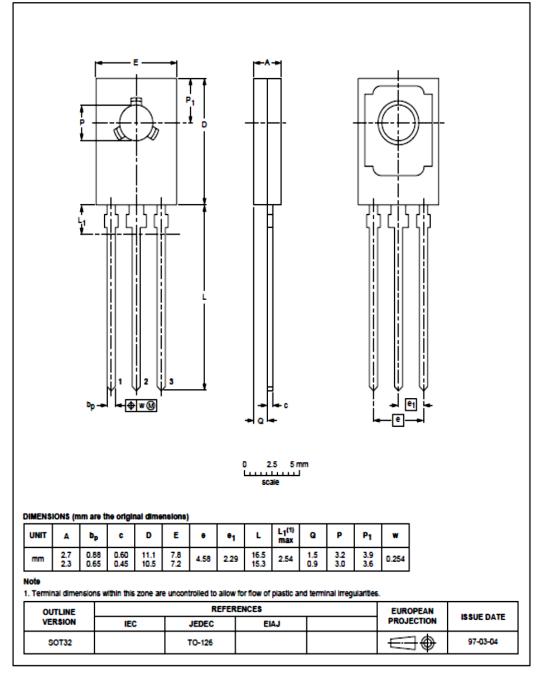
CHARACTERISTICS


T_J = 25 °C unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
I _{CBO}	collector cut-off current	I _E = 0; V _{CB} = 50 V	-	50	nA
		I _E = 0; V _{CB} = 50 V; T _J = 150 °C	-	10	μA
I _{EBO}	emitter cut-off current	I _C = 0; V _{EB} = 5 V	-	50	nA
h _{FE}	DC current gain	I _C = 0.5 A; V _{CE} = 12 V; (see Fig.2)	40	-	
		I _C = 2 A; V _{CE} = 1 V; (see Fig.2)	20	-	
VCEsat	collector-emitter saturation voltage	Ic = 0.5 A; Is = 50 mA	-	300	тV
		I _C = 2 A; I _B = 200 mA	-	700	mV
V _{BEsat}	base-emitter saturation voltage	I _C = 0.5 A; I _B = 50 mA	-	1.2	۷
		I _C = 2 A; I _B = 200 mA	-	1.5	۷
f _T	transition frequency	I_{C} = 0.25 A; V_{CE} = 5 V; f = 100 MHz; T_{amb} = 25 °C	60	-	MHz

Product specification

NPN power transistor


BD131

NPN power transistor

PACKAGE OUTLINE

Plastic single-ended leaded (through hole) package; mountable to heatsink, 1 mounting hole; 3 leads SOT32

1999 Apr 12

NPN power transistor

BD131

DEFINITIONS

Data Sheet Status						
Objective specification	This data sheet contains target or goal specifications for product development.					
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.					
Product specification	This data sheet contains final product specifications.					
Limiting values						
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or						

more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

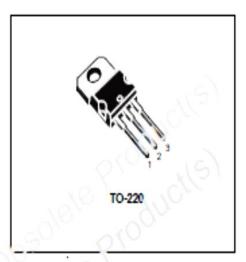
LIFE SUPPORT APPLICATIONS

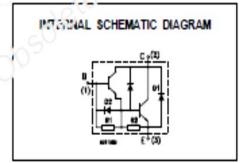
These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.

BU806 BU807

MEDIUM VOLTAGE NPN FAST SWITCHING DARLINGTON TRANSISTORS

- STMcroelectronics PREFERRED SALESTYPES
- NPN DARLINGTONS
- LOW BASE-DRIVE REQUIREMENTS
- INTEGRATED ANTIPARALLEL
- COLLECTOR-EMITTER DIODE


APPLICATION


 HORIZONTAL DEFLECTION FOR MONOCHROME TVs

DESCRIPTION

The devices are silicon Epitaxial Planar NPN power transistors in Darlington configuration with integrated base-emitter speed-up diode, mounted in TO-220 plastic package.

They can be used in horizontal output stages of 110 °CRT video displays.

ADSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Va	Unit	
	0,00	BU806	BU807	
Vcso	Collector-base Voltage (Is = 0)	400	330	V
Victor	Collector-emitter Voltage (V _{R6} = -6V)	400	330	V
VCEO	Collector-emitter Voltage (Ig = 0)	200	150	V
VEBO	Emitter-Base Voltage (I _C = 0)		V	
lo lo	Collector Current	8		٨
low	Collector Peak Current	1	٨	
low	Damper Diode Peak Forward Current	10		٨
la la	Base Current	1	٨	
Ptot	Total Power Dissipation at Toxe < 25 °C	60		W
Terg	Storage Temperature	-65 t	-65 to 150	
T,	Max Operating Junction Temperature	150		°C

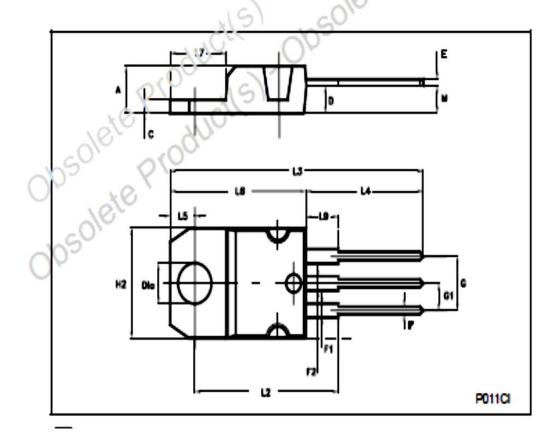
BU806 / BU807

THERMAL DATA

Review	Thermal	Resistance	Junction-case	Max	2.08	*C/W
Rajano	Thermal	Resistance	Junction-ambient	Max	70	°C/W

ELECTRICAL CHARACTERISTICS (Tosse = 25 °C unless otherwise specified)

symbol	Parameter	Test C	onditions	Min.	Тур.	Max	Unit
loss	Collector Cut-off Current (Vas = 0)	for BU807 for BU806	V _{CS} = 330 V Vcs = 400 V			100 100	μÂ
losv	Collector Cut-off Current (Vas = -6V)	for BU807 for BU806	V _{CS} = 330 V V _{CS} = 400 V			100 100	μ Λ μ Λ
I _{EBO}	Emitter Cut-off Current (I _C = 0)	V ₆₈ = 6 V				3.5	5MA
Vceopus)*	Collector-Emitter Sustaining Voltage (I ₈ = 0)	ic = 100 mA	for BU807 for BU806	150 200	. 21	CC	v v
V _{CE(set)} *	Collector-Emitter Saturation Voltage	le = SA	ly = 50mA	0(0.	15	51
V _{RE(MI)} *	Base-Emitter Saturation Voltage	le = SA	l _e = 50mA		11	(CA.)	V
Vç•	Damper Diode Forward Voltage	l; = 4A	c010	~	00,	2	۷
tan ta ta	RESISTIVE LOAD Turn-on Time Turn-off Time Storage Time Fail Time	le = 5 A let = 50 mA	V _{cc} = 100 V I _{k0} = -500 mA	, Y	0.35 0.4 0.55 0.2	1	5 5 5


Pulsed: Pulse duration = 300 µs, duty cycle < 1.2 %

...10

DIM.		mm			inoh			
LANK.	MIN	TYP.	MAX	MIN.	TYP.	MAX		
٨	4.40		4.60	0.173		0.181		
C	1.23		1.32	0.048		0.052		
D	2.40		2.72	0.094		0.107		
E	0.49		0.70	0.019		0.027		
F	0.61		0.88	0.024		0.034		
F1	1.14		1.70	0.044		0.067		
F2	1.14		1.70	0.044		0.007		
G	4.95		5.15	0.194		0 202		
G1	2.40		2.70	0.094	11	0.106		
H2	10.00		10.40	0.394	~0°	0.409		
12		16.40			65/5	16		
L4	13.00		14.00	0.511		0.551		
15	2.65		2.95	0.174		0.116		
L6	15.25		15.75	0.630	20	0.620		
L7	6.20		6.60	0.344	202	0.260		
L9	3.50		3.92	0.137	2/0	0.154		
M		2.60	02	. 0	0.102			
DIA	3.75		3.05	0.147		0.151		

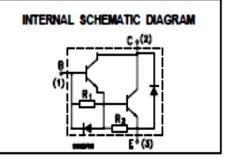
TO-220 MECHANICAL DATA

.

BU808DFI

HIGH VOLTAGE FAST-SWITCHING NPN POWER DARLINGTON TRANSISTOR

- STMcroelectronics PREFERRED SALESTYPE
- NPN MONOLITHIC DARLINGTON WITH INTEGRATED FREE-WHEELING DIODE
- HIGH VOLTAGE CAPABILITY (> 1400 V)
- HIGH DC CURRENT GAIN (TYP. 150)
- FULLY INSULATED PACKAGE (U.L. COMPLIANT) FOR EASY MOUNTING
- LOW BASE-DRIVE REQUIREMENTS
- DEDICATED APPLICATION NOTE AN1184


APPLICATIONS

 COST EFFECTIVE SOLUTION FOR HORIZONTAL DEFLECTION IN LOW END TV UP TO 21 INCHES.

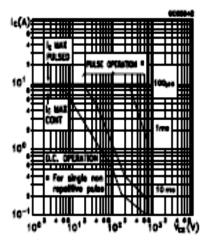
DESCRIPTION

The BU808DFI is a NPN transistor in monolithic Darlington configuration. It is manufactured using Multiepitaxial Mesa technology for cost-effective high performance.

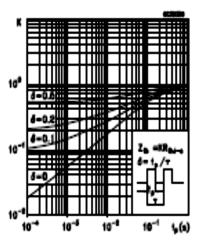
ABSOLUTE MAXIMUM RATINGS

\$ymbol	Parameter	Value	Unit
VCBO	Collector-Base Voltage (I _E = 0)	1400	V
VCEO	Collector-Emitter Voltage (I _R = 0)	700	V
Veeo	Emitter-Base Voltage (Ic = 0)	5	V
le le	Collector Current	8	٨
lew	Collector Peak Current (tp < 5 ms)	10	٨
la la	Base Current	3	٨
law	Base Peak Current (tp < 5 ms)	6	٨
Ptot	Total Dissipation at T _a = 25 °C	52	W
Visol	Insulation Withstand Voltage (RMS) from All Three Leads to Exernal Heatsink	2500	v
Terg	Storage Temperature	-65 to 150	°C
T	Max. Operating Junction Temperature	150	°C

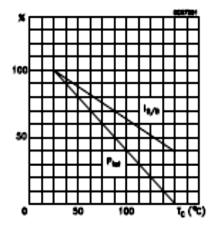
THERMAL DATA

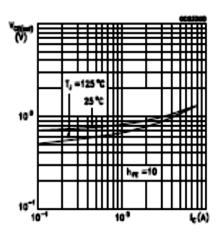

Rmi-case Max 2.4 °C/W

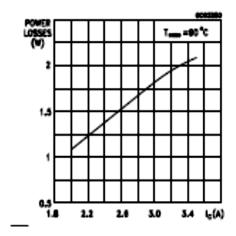
ELECTRICAL CHARACTERISTICS (Toxes = 25 °C unless otherwise specified)


Symbol 8 1	Parameter	Test Conditions	Min.	Typ.	Max.	Unit
losa	Collector Cut-off Current (V _{BE} = 0)	V _{C5} = 1400 V			400	μ A
leeo	Emitter Cut-off Current (lc = 0)	V ₅₈ = 5 V			100	mA
V _{CE(ant)} *	Collector-Emitter Saturation Voltage	Ic=5A Ig=0.5A			1.6	v
V _{BE(sat)} *	Base-Emitter Saturation Voltage	le = 5 A la = 0.5 A			2.1	v
heet	DC Current Gain	le = 5 A Ves = 5 V le = 5 A Ves = 5 V Tj = 100 °C	60 20		230	
3 4	INDUCTIVE LOAD Storage Time Fail Time	V _{CC} = 150 V I _C = 5 A Ia1 = 0.5 A Vasion) = -5 V			3 0.8	5 E
30	INDUCTIVE LOAD Storage Time Fail Time	V _{CC} = 150 V I _C = 5 A I _{B1} = 0.5 A V _{BE(OT)} = -5 V T _j = 100 ⁶ C		2 0.8		5 E
VF	Diode Forward Voltage	l¢ = 5 A			3	V

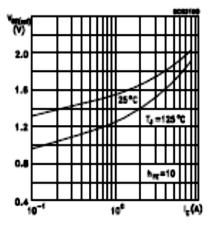
Pulsed: Pulse duration = 300 µs, duty cycle 1.5 %

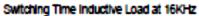

Safe Operating Area

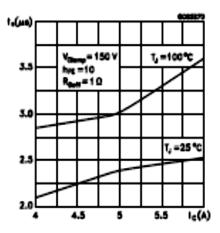

Thermal Impedance

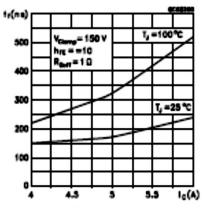

Derating Curve

Collector Emitter Saturation Voltage

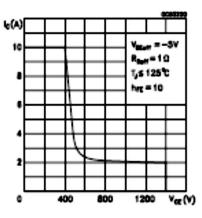

Power Losses at 16 KHz




DC Current Gain


Base Emitter Saturation Voltage

Switching Time Inductive Load at 16KHZ

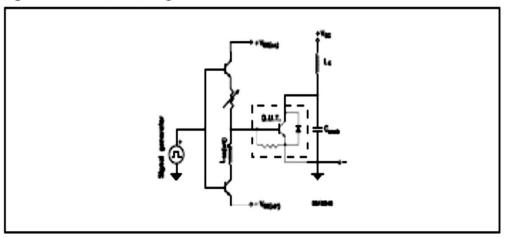


BASE DRIVE INFORMATION

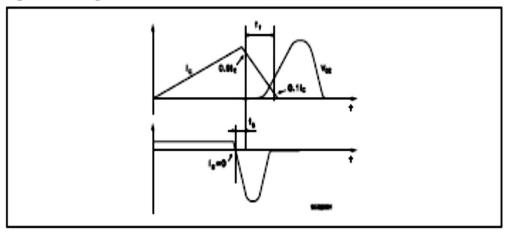
In order to saturate the power switch and reduce conduction losses, adequate direct base current I_{B1} has to be provided for the lowest gain h_{FE} at 100 °C (line scan phase). On the other hand, negative base current I_{B2} must be provided to turn off the power transistor (retrace phase).

Most of the dissipation, in the deflection application, occurs at switch-off. Therefore it is essential to determine the value of I_{122} which minimizes power losses, fail time t_{f} and, consequently, T_{j} . A new set of curves have been defined to give total power losses, t_{e} and t_{f} as a function of I_{122} at both 16 KHz scanning frequencies for choosing the optimum negative

Reverse Blased SOA

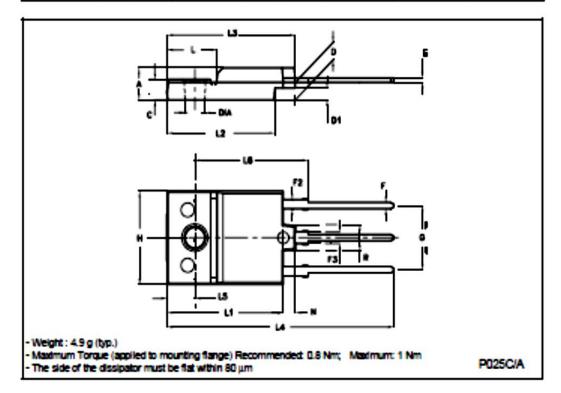

drive. The test circuit is illustrated in figure 1. Inductance L₁ serves to control the slope of the negative base current I_{B2} to recombine the excess carrier in the collector when base current is still present, this would avoid any tailing phenomenon in the collector current.

The values of L and C are calculated from the following equations:


$$\frac{1}{2}L(I_{C})^{2} - \frac{1}{2}C(V_{CEB})^{2} \qquad \omega - 2\pi f - \frac{1}{\sqrt{LC}}$$

Where Ic- operating collector current, Vcanyflyback voltage, f- frequency of oscillation during retrace.

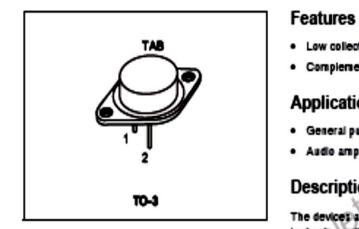
Figure 1: Inductive Load Switching Test Circuits.

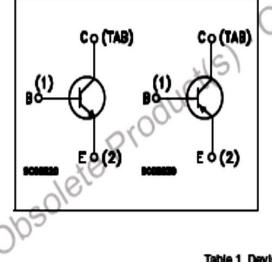


BU808DFI

DIM.					inch	
Law.	MIN.	TYP.	MAX	MIN.	TYP.	MAX
٨	5.35		5.65	0.211		0.222
C	3.30		3.80	0.130		0.150
D	2.90		3.10	0.114		0.122
D1	1.88		2.08	0.074		0.063
E	0.75		0.95	0.030		0.037
F	1.05		1.25	0.041		0.049
F2	1.50		1.70	0.059		0.067
F3	1.90		2.10	0.075		0.083
G	10.80		11.20	0.425		0.441
н	15.80		16.20	0.622		0.638
L		9			0.354	
L1	20.80		21.20	0.819		0.835
12	19.10		19.90	0.752		0.783
13	22.80		23.60	0.898		0.925
L4	40.50		42.50	1.594		1.673
LS	4.85		5.25	0.191		0.207
L6	20.25		20.75	0.797		0.817
N	21		23	0.083		0.091
R		4.6			0.181	
DIA	3.5		3.7	0.138		0.146

ISOWATT218 MECHANICAL DATA





Complementary power transistors

Datacheet - production data

Figure 1. Internal schematic diagram

· Low collector-emitter saturation voltage Complementary NPN - PNP transistors

Applications

- roductis General purpose
- Audio amplifier

Description

The devices are manufactured in planar technology with 'base Island' layout and are suitable for audio, power linear and switching applications.

			-			
Table	4	D-max	100		1000	1000
	н.	LBV		80	10.0	181 V

Order oode	Marking	Paskage	Paokaging
2N3066	2N3055	70.0	
MJ2966	MJ2965	TO-3	Tray

1 Absolute maximum rating

	Parameter Ni		Value		
Symbol			2N3056	Unit	
		PNP	MJ2866		
Vcao	Collector-base voltage (lg = 0)		100	٧	
VCER	Collector-emitter voltage (Reg = 100 Ω)		70	٧	
VCED	Collector-emitter voltage (Ig = 0)		60 19	γ¢	
VEBO	Emitter-base voltage (I _C = 0)		. 30/	۷	
ŀ	Collector current		0/18 [°]	A	
l _B	Pase current	0	(077	A	
P _{TOT}	Total dissipation at T _o ≤ 25 °C	Y	115	W	
Tity	Storage temperature		-85 to 200	ç	
τJ	Max. operating junction temperature		200	'n	

Table 2. Absolute maximum rating

able	5.	Thermal	data
	ω.		

Т

8ymbe	Perameter	Value	Unit
Rajeou	Thermal resistance junction-case max	1.5	'C/W

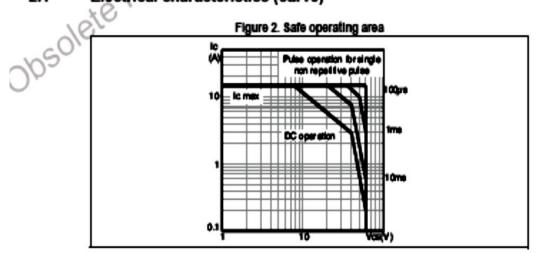
Note:

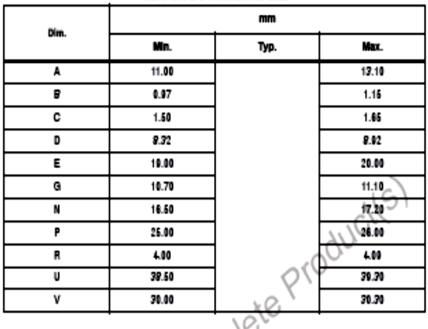
For PNP type voltage and current values are negative

2 Electrical characteristics

(Tosse = 25°C; unless otherwise specified)

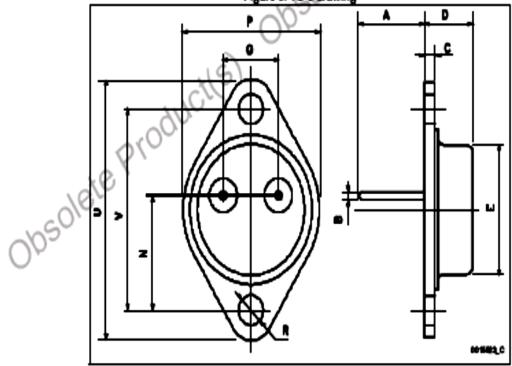
Table 4. Electrical Characteristics						
8ymbol	Parameter	Test conditions	Min.	Typ.	Max.	Unit
loex	Collector cut-off current (Vag = -1.5 V)	V _{GE} = 100 V V _{GE} = 100 V T _C = 150 ^I C			1 5	nA nA
ICED	Collector out-off current (1p = 0)	V _{GE} = 30 V			0.7	MA
1000	Emitter out-off current (I _C = 0)	V ₆₀ - 7 V			, c'l'	, nA
V _{CED[101]} ^[1]	Collector-emitter sustaining voltage (ig = 0)	l _C = 200 mA	60	09,	»-	۷
VCER(ses) ⁽¹⁾	Collector-emitter sustaining voltage (R _{DE} = 100 Ω)	lo- 200 mA	Å			۷
Votional ⁽¹⁾	Collector-emitter saturation voltage	IC-4 A IS-400 mA IC-10 A IS-2027A			1 3	v
Vee ⁽¹⁾	Base-emitter voltage	Ic=4A VCE-4V			1.8	٧
heers	DC current gain	Ic-4A Vos-4V Ic-19A Vos-4V	20 5		70	


Table 4. Electrical characteristics


1. Paked: Pake duration = 300 µs, duty cycle ≤ 1.8%

Note: For PNP type voltage and current values are negative


2.1


Electrical characteristics (curve)

4 Revision history

Date	Revision	Changes
11-Oct-1999	8	
29-Jan-2007	7	Content reworked to improve readability, no technical changes
11-Nov-2013	8	Inserted Table 3: Thermal data and Figure 2: Safe operating area. Minor text changes.
		(15)

Table C	Documani	revision history	1
I ANIA P			