

FEASIBILITY OF A ONE-WAY TRAFFIC SYSTEM FOR **COLOMBO CITY**

This thesis was submitted to the Department of Civil Engineering University of Moratuwa in partial fulfilment of the requirements for the Degree of Master of Engineering. 624 04 656.052.1(548.7)

Supervised by Professor Amal S. Kumarage

Department of Civil Engineering University of Moratuwa Sri Lanka

UM Thesis

80146

March 2004

80146

DECLARATION

The work included in this thesis is part or whole, has not been submitted for any other academic qualification at any institution.

U.L.Tissa

UOM Verified Signature

Prof. Amal S. Kumarage

ABSTRACT

Traffic management in main cities has become an absolute need due to the increase in the number of vehicles in the limited road space, at present. There are numerous limitations that restrict the widening of roads to cater to the demand of the ever-increasing vehicular load in an already congested city such as Colombo. The question is how are we going to differentiate between the benefit and the cost of development. It is very important to look for cost effective methods by minimizing the adverse effects on the economy in a developing country like Sri Lanka.

The objective of this research was to check the suitability of a One-way traffic system in a selected area of the Colombo City. The most congested areas, which could be expanded later, depending on the results obtained, have been selected first. The study area was confined to Northern and Southern banks of Beira Lake in Colombo Fort area. Computer software developed by Transportation Engineering Division, Department of Civil Engineering of University of Moratuwa called 'Transplan' was used for the analysis of data. This is still in the developing stage, but has been observed to have been used accurately by comparing actual data at the site. However, 'Transplan' has greatly reduced the amount of time required for calculation. There are other researches that are being carried out to study the suitability of Bus Lanes and Light Rail Transit (LRT), both of which require additional road space in the existing road network. This requirement could be met with a One-way traffic system, which increases the capacity in those road links. Traffic management measures such as integrated signalling systems, tidal flow operation etc, also have to be implemented in parallel with a one-way traffic system to have optimum benefits. Any of the above researches accrues benefits to the transport sector development resulting in large economic gains to the country, indeed.

However, it is high time we explored the feasibility of implementing accurate traffic management systems that can relieve the congestion level in busy business cities. One-way traffic systems are operating in most developed countries quite effectively at present.

Very soon, we will have to select a One-way traffic system as a traffic management option in the Colombo City, as it is the most convenient alternative in the prevailing situation.

ACKNOWLEDGMENT

I wish to thank most sincerely Prof. Amal Kumarage, the Supervisor and Dr. Saman Bandara, Senior Lecturer, for their valuable support and guidance extended so generously to me, throughout the study. Despite their busy schedules, both Prof. Amal Kumarage and Dr. Saman Bandara found time, particularly when I was desperately in need of assistance, to sort out quite a number of difficult issues in my study and produce the Study Report in its final form.

I also take this opportunity to express my gratitude to my employer, Eng. M.G.C.P Wijethilake Director (Technical Services), Resources Development Consultants Limited for providing me the facilities to follow this course amidst tight work schedules. The experience gained, parallel to the course in the same field under the guidance of Eng. R.G.Rajapakse is greatly appreciated. Also I express my gratitude to Eng. Burney Wijesuriya and Mr. G.H.A Perera for assisting me in making corrections in the text of the thesis.

I am thankful to the Traffic Laboratory Staff, Department of Civil Engineering who helped me in many ways to carry out a successful research. My special thanks are due to Ms Predeepa Jayaratne in this regard.

Finally, I thank my beloved wife Sala for all her moral support and tolerance that shone as a beacon throughout the long period of two years of my graduate study and preparation of this Report.

CONTENTS

		PAGE
Abstract		i
Acknowledgment		iii
Contents		iv
List of Figures		vi
List of Tables		vii
List of Abbreviations		viii
Chapter 1 – INTRODUCTION		01
Chapter 2 - PRESENT SITUATION	OF THE ROAD SYSTEM	04
2.1 Existing road network	in the city	04
2.2 Selection of area		06
2.3 Methodology of Networ	rk Identification	07
	ONE-WAY TRAFFIC	10
3.1 One-way and Tidal Flo	w Operations	10
3.2 Properties of a One-wa	y traffic system	12
3.3 Effect at intersections		15
Chapter 4 - METHODOLOGY		18
4.1 One-way Loops in Selec	cted Area	18
4.2. Data Collection		19
4.2.1 Traffic Data C	Collection	20
4.2.2 Road Sections	al Properties	20
4.2.3 Socio Econom	nic Data Collection	23
4.2.4 Other Data		24
4.3 Procedure for Analysis		24
Chapter 5 - DATA ANALYSIS		27
5.1 One-way Road Networ	k	27
5.2 Calculations Using Tra	ansplan	29
5.3 Comparison of a Two v	way and a One-way system	30

5.4	Vehicle Kilometres and Hours Savings (One-way against Two-way)	30
	5.4.1 Individual Combinations	30
	5.4.2 Cumulative Combinations	35
5.5	Change of increased daily Vehicle Volumes	38
5.6	Optimum Loop Combinations	42
5.7	Improvements to LOS in Selected area for One-way	46
5.8	Further LOS improvements by adopting civil cost	49
5.9	Improvements to Intersections and Junctions of one-way system	54
Chapter 6	- ECONOMIC COST AND BENEFITS OF THE PROJECT	59
6.1	Cost Component of the Project	59
6.2	Benefit Calculations	61
	6.2.1 Savings in Travel Time	61
	6.2.1.1 Passenger Travel Time Savings	62
	6.2.1.2 Travel Time Savings to Freight Consignees	64
	6.2.2 Savings in Fuel	68
	6.2.3 Savings in Emissions	70
	6.2.4 Vehicle Operating Cost Savings	72
	6.2.5 Accident Cost Savings	73
Chapter 7	- ECONOMIC APPRAISAL OF THE PROJECT	78
7.1	Net Present Value of benefits	78
7.2	Net Benefits	79
7.3	Benefit Cost Ratio	80
7.4	Economic Internal Rate of Return	80
Chapter 7	- CONCLUSION	82
REF	ERENCES	
APPI	ENDIXES	
	Appendix I – One-way Roads and their Direction of flow	
	Appendix II – Priority Basis Loop Combinations	
	Appendix III- Improvements to LOS by improved Road Section Elements	onal

LIST OF FIGURES

		Page
Fig. 2.1	Non availability of Pedestrian facilities in most of our roads	05
Fig.2.2	Obstructions to Pedestrian flow in Fort Area	07
Fig.2.3	Area Selected for One-way Loops	09
Fig. 3.1	Tidal Flow Operation	11
Fig. 3.2	Under utilized Lanes in opposite direction to peak flow	12
Fig. 3.3	Conflicts at Intersections having a different combinations of	
	Movements	16
Fig. 3.4	Present Congestion Level at Signalized Intersections	17
Fig. 4.1	Road Link Properties in Data Base	21
Fig. 4.2	Node Properties at Junctions in Data Base	22
Fig. 4.3	Socio Economic Data Base	23
Fig. 4.4	Network Statistic Output Data	25
Fig. 5.1	Selected One-way Road Network in CMC	28
Fig. 5.2	Excess Travel Length due to One-way	34
Fig. 5.3	Improved LOS in Road links due to Introduction of One-way	47
Fig. 5.4	Improved LOS in Link Kilometres due to Introduction of One-way	48
Fig. 5.5	Highly Congested Land Use besides a main road at Maradana	50
Fig. 5.6	Improved number of Road links in LOS, further improvement to	
	road cross sectional properties	52
Fig. 5.7	Improved number of links Kilometers in LOS, further	
	improvement to road cross sectional properties	53

LIST OF TABLES

		Page
Table 3.1	Advantages and Disadvantages of One-way Streets	14
Table 5.1	Matrix of Vehicle Kilometre Savings (One-way against Two-way)	31
Table 5.2	Matrix of Vehicle Hour Savings (One-way against Two-way)	32
Table 5.3	Matrix of Vehicle Kilometre Savings of Cumulative	
	Combinations	36
Table 5.4	Matrix of Vehicle Hour Savings of Cumulative Combinations	36
Table 5.5	Matrix for Change of Traffic Volumes	40
Table 5.6	Summery of Savings for Different Combinations	43
Table 5.7	Accuracy Check with Actual Traffic survey Data	46
Table 6.1	General Summary of Civil Cost per Kilometre of the Project	60
Table 6.2	VOT Savings for Passenger	62
Table 6.3	Distribution of Commodities in Road Transport	66
Table 6.4	Value of Freight Transport Savings	67
Table 6.5	Calculation of Savings in Fuel Consumption	69
Table 6.6	Calculation of Emission Cost Savings	71
Table 6.7	Calculation of Savings in Vehicle Operating Costs	73
Table 6.8	Accident Cost Savings	75
Table 7.1	Calculation of Net Present Value of Benefits	79

LIST OF ABBREVIATIONS

AADT - Average Annual Daily Traffic

B/C - Benefit Cost Ratio

BOQ - Bill of Quantities

CMC - Colombo Municipal Council

CNSA - Cumulative Number of Standard Axles

CRWB - Colombo Ratnapura Wellawaya Batticaloa

DBST - Double Bitumen Surface Treatment

EIRR - Economic Internal Rate of Return

LOS - Level of Service

LRT - Light Rail Transit

Mw - Mawatha

NPV - Net Present Value

USA - United States of Americanka

V/C - Volume to Capacity Ratio

VOC - Vehicle Operating Cost

VOT - Value of Time