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ABSTRACT 

Conduction, convection and radiation are the principle modes of transferring heat from a source 
to sink. In a furnace, when the operating temperature is above 10000C, radiation heat transfer will 
be the predominant mode of transferring the heat. For such a furnace, estimating the radiation 
heat transfer accurately is essential. To estimate the heat transfer in the absence of participating 
medium, obtaining radiation properties of surfaces, temperatures of surfaces and view factor 
between surfaces is necessary. When participating media is concerned, it mainly consists of CO2 
and H2O due to fossil fuel combustion. Mixtures of these gasses are typically participating in 
radiation heat transfer process with different emissivity values at different temperatures. 
Therefore, view factor concept will not be accurate in such an instant. Direct Exchange Area 
(DEA) is introduced to cater for participating medium involved problems. To evaluate the 
radiation heat transfer with participating medium using zonal method, it is essential to determine 
the DEA values. Direct integration and Monte Carlo are the main methods to evaluate view 
factor. However, Monte Carlo method is not viable to apply for simple shapes such as rectangular 
enclosures due to large time consumption and computer storage requirement. Thus, direct 
integration is a good approach to find DEAs for simple geometries. 

Surface to surface zones (SS), surface to volume zones (SG), volume to volume zones (GG) are 
the scenarios which needed to be determined in DEA estimation. Generalized mathematical 
equations for DEAs were simplified by using vector algebra with considering the simple shape of 
rectangular furnace walls. Further simplification could be done by reducing the integration 
scheme. Later, computer programming has been used to estimate the DEA values which is based 
on numerical techniques. 

The resulting programming code is based on Matlab software, which has been developed to 
determine DEAs for each and every zones surface and volume which will be decided by the user. 
Estimated DEAs are not available in literature due to its dependency on area and absorption 
coefficient variable selected by the user. However, programming code based results validation 
can be done in two ways. One way is to convert DEA values for surface zones in to view factors 
by avoiding the effect from participating medium. Then the evaluated results can be compared 
with well known literature. Secondly, a mathematical relation which will be explained in 
literature can be used to compare overall results. 

The computer based program was sophisticated with a user friendly interfaceso that the user or 
the designer does not need to worry about what is happening inside. The calculated result will 
later be transformed in to matrix form which can be directly used on estimation of heat transfer. 

For future work, improvement of developed software interface to perform in optimum condition, 
enhancing with more features to cater for scattering situations, handling of garbage input by user, 
reducing the effect on higher absorption coefficient on the results were suggested. 
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1. INTRODUCTION 

1.1 Background 

When there is temperature difference between two surfaces, thermal energy always 

tries to transferfrom one surface to other surface to make the system balance. This 

phenomenon is known as heat transfer and net heat transfer is the term for the result 

of attempting to balance the thermal system. Conduction, convection and radiation 

are the three mechanisms of transferring thermal energy from one surface to other. 

Each mechanism has unique way of transferring heat.  

 

Heat treatment of an object / work piece to achieve desired properties, is one major 

application of heat transferring in industry[1]. Furnace or kiln is the term which used 

to denote the enclosure which is used to achieve above mentioned requirements. “In 

most high temperature furnaces operating at above 10000C, about 90% of the heat 

transfer is being carried out by radiation heat transfer mechanism”. Ceramic, bricks 

and pottery making kilns (operates around 10000C), cement and lime kilns (operates 

around 8500C – 10000C), Glass making furnaces (operates around 14000C – 16000C) 

are some examples of such applications[2]. Therefore, it is very important to 

determine radiation heat transfer accurately to get overall picture of the furnace 

performance. In order to determine radiation heat transfer between two surfaces, it is 

necessary to uncover the information about the temperatures of the two surfaces, 

radiation properties of both surfaces (eg: emissivity, absorptivity,.), the direct 

exchange area factors (generalized version of view factors) and the radiation 

properties of participating medium[3]. When estimating the radiation heat transfer 

between two surfaces, estimation of view factor is the most difficult task which is 

needed to be carried out at side. If pre calculated view factors are not available, even 

with the simplest shape where two surfaces are involved, it will be difficult to find a 

solution due to mathematical complexity of the view factor calculation. Strictly 

speaking, view factor is bounded by the condition of none participating medium or 

the behavior of the medium is ideal. In practically, combust air (for direct fired 

furnaces) contains of CO2 and H2O, whose emission and absorption coefficients are 
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different at different temperatures[4]. Therefore, usage of view factor is no longer 

valid for such instances. Direct exchange area (DEA) is the term which is introduced 

to overcome such issues related with view factor (area dependent, participating 

medium)[5] 

DEA simply means, how a volume or surface sees the other surface or volume. DEA 

estimation is even more complicated than view factor estimation due to the 

appearance of participating medium. When it comes to a furnace or kiln, it will 

become multiple surfaces which interact with others and its own by means of 

radiation heat exchange. Therefore, determination of DEA for each and every surface 

with participating medium is necessary. Furthermore, furnaces are having large wall 

areas and more than one heat source, which will lead for variation in the wall 

temperature along the surface. Therefore, the surface has to be divided in to several 

isothermal segments in evaluation. This procedure can be further extended to 

incorporate volume zones as well. Analyzing an enclosure with several zones is 

known as zonal method. Analyzing several zones will direct the DEA estimation into 

complex, repetitive computational estimation requirement with furnace walls as in its 

boundaries.   

 

1.2  Problem statement 

For a furnace designer or a person who search for improvement of a furnace, should 

find out the amount of heat energy transferred through radiation. In order to do so, it 

is essential to determine DEA values on the side. Estimation of DEA is a difficult 

task due to involvement of complicated mathematics. However, this needed to be 

done several times to identify suitable conditions of the furnace to move for an 

optimized solution although is a tedious task. There is a requirement for cater this 

matter to aid furnace design / optimization process according to their variable inputs. 

. 
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1.3 Aim 

To eliminate the tedious task of estimating DEA repeatedly and accurately according 

to the designer’s or furnace investigator’s dynamic requirement.  

 

1.4 Objectives 

 To developing a computable mathematical model using integral reduction and 

numerical techniques to estimate DEA. 

 

 To integratemathematical model to obtain DEA values for rectangular 

enclosure. 

 

 To develop auser friendly system, which can be used to estimate all DEAs 

while maintaining the flexibility to adopt according to the user defined inputs. 
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2. LITERATURE REVIEW 

2.1 Radiation heat transfer 

Any object emits thermal energy through radiation no matter what temperature it 

holds. This is done by means of electromagnetic radiation mechanism. However, the 

concerning part is the net radiation heat transfer which will cause for change of the 

temperature and the properties of the object. Although the object emits different 

electromagnetic waves in the complete spectrum, wave lengths between 10-7m and 

10-3m plays the vital role in radiation heat transfer[6]. Amount of heat flux which 

emits by a particular body at particular temperature has been prescribed by the Stefan 

– Boltzmann low, given by 

 

   𝐸𝐸 =  𝜎𝜎𝑇𝑇4  Eq . 2.1 

 

This is an ideal case where the emissive body is called as a black body. Another 

property of black body is the capability of absorbing all incoming radiation. In this 

case reflectance and transmittance of energy of the incident radiation becomes zero. 

Some typical cases of different types of bodies are summarized below. 

𝛼𝛼 = 1,𝜌𝜌 = 0, 𝜏𝜏 = 0   𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵 

𝜌𝜌 = 1,𝛼𝛼 = 0, 𝜏𝜏 = 0   𝑊𝑊ℎ𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 

𝜌𝜌 < 1,𝛼𝛼 < 1, 𝜏𝜏 ≥ 0  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

𝜌𝜌 < 1,𝛼𝛼 < 1, 𝜏𝜏 = 0  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 

𝛼𝛼 = 𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀𝜀ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 

Although the last equation for the relation between absorptivity and emissivity is 

proven by Kirchhoff’s low, the validation will still holds if the surfaces are diffuse 

[6]. When a furnace is considered, it has walls which are supposed to be well 

insulated and the participating gas medium which consists of combustion gas. 

Majority of the furnace surface insulation material are considered as diffuse. 

Furthermore, for gaseous medium, it can be assumed as a grey gas relation for most 

cases[2]. However, Hottel and Egbert (1942) came up with an empirical relation to 

determine absorption coefficient using emissivity of the gas [7].  
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  𝛼𝛼𝑔𝑔�𝑡𝑡𝑔𝑔 , 𝑡𝑡𝑤𝑤� =  ��1 − �1 − 𝜀𝜀𝑔𝑔(𝑡𝑡𝑤𝑤)��
𝑡𝑡𝑔𝑔
𝑡𝑡𝑤𝑤 � �𝑡𝑡𝑔𝑔

𝑡𝑡𝑤𝑤
�
𝑛𝑛

 Eq. 2.2 

 

Where n = 0.65 for CO2 and n = 0.45 for H2O. With these factors overall 

absorptivity can be estimated. This estimation is more accurate if the furnace is gas 

fired. If the furnace is liquid fuel based or coal based, properties of fuel particles and 

properties of soot particles should also be determined during the overall absorption 

coefficient estimation. Nevertheless, these data are readily available for various 

temperatures and pressures.   

Incorporating the emissivity in to the equation 2.1 leads to  

 

   𝐸𝐸 =  𝜀𝜀𝜀𝜀𝑇𝑇4  Eq. 2.3 

 

This energy flux will emit over hemisphere around its position as the centre. More 

useful application of radiation heat transfer is to determine the net heat exchange 

between two surfaces rather than the emission or absorption of one particular surface. 

 

 
Figure 2.1: Radiation heat exchange between two surfaces 

(source: [3]) 
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Consider the arbitrary selected geometrical surfaces as shown in figure 2.1. Surface 1 

emits heat flux in the whole hemisphere surrounding itself. The total energy emitted 

by the surface depends on the area of the emitting surface. It can be observed that 

only a part of the emitted energy from the surface 1 can be received by surface 2. 

Furthermore, when the area of two surfaces are changed, the amount of heat which 

can be received will also be altered. The fraction of energy which can be received by 

surface 2 from surface 1 is known as view factor. The F1-2 is the notation which 

implies fraction of radiant energy emitted by surface 1 and intercepted by surface 2.  

The net heat transfer between two grey surfaces (no participating medium) is 

expressed by considering incident radiation from other surface, emitted radiation 

from the surface due to its body temperature and reflected incident radiation. 

 

  𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛 ,1 =  𝐴𝐴1( 𝐽𝐽1 −  𝐻𝐻1 ) Eq. 2.4 

Where  

  𝐽𝐽 1 =  𝐸𝐸1 + 𝜌𝜌1𝐻𝐻1    [10]  Eq. 2.5 

 

By generalize the equation to multiple surfaces, it will end up with 

 

 𝑞𝑞𝑖𝑖 =  𝜀𝜀𝑖𝑖
1−𝜀𝜀𝑖𝑖

(𝐸𝐸𝑏𝑏 ,𝑖𝑖 − 𝐽𝐽𝑖𝑖)  Eq. 2.6 

 
𝑞𝑞𝑖𝑖
𝜀𝜀𝑖𝑖
− ∑ � 1

𝜀𝜀𝑗𝑗
− 1� 𝐹𝐹𝑖𝑖−𝑗𝑗 𝑞𝑞𝑗𝑗 + 𝐻𝐻𝑜𝑜 ,𝑖𝑖 =  ∑ 𝐹𝐹𝑖𝑖−𝑗𝑗𝑁𝑁

𝑗𝑗=1 (𝐸𝐸𝑏𝑏 ,𝑖𝑖 − 𝐸𝐸𝑏𝑏 ,𝑗𝑗 )𝑁𝑁
𝑗𝑗=1 [5] Eq. 2.7 

 

It can be seen from Eq. 2.7 estimation of view factor between each and every 

surfacesis a necessity to estimate heat flux of every surface. 

  

2.2 View factor 

The mathematical definition for view factor is as follows 

 

  𝐹𝐹𝑖𝑖−𝑗𝑗 =  1
𝐴𝐴𝑖𝑖
∫ ∫

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗
𝜋𝜋𝑆𝑆2 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖𝐴𝐴𝑗𝑗𝐴𝐴𝑖𝑖

 Eq. 2.8 
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Thus, estimation of view factor needs more mathematical treatment to reduce its 

complexity. Furthermore, this process should repeat for each and every case as 

mentioned in earlier. However, from reciprocity relation of view factors 

 

  𝐴𝐴𝑖𝑖𝐹𝐹𝑖𝑖−𝑗𝑗 =  𝐴𝐴𝑗𝑗𝐹𝐹𝑗𝑗−𝑖𝑖  Eq. 2.9 

 

With this relation, number of estimation reduced from N x N to N (N-1)/2. Still the 

task remains up to a certain level although the computational time is reduced. 

View factors estimation can be done by different ways and means. A popular 

classification of estimation methods is given below. 

 

Direct integration method 

• Surface integration 

• Contour integration 

 

Monte carlo method 

 

Special methods 

• View factor algebra 

• Crossed strings method 

• Unit sphere method 

• Inside sphere method[5] 

 

Comparison of above mentioned approaches is given below Table 2.1  
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Table 2.1: Comparison of view factor calculation methods 

Direct integration 

method 

Monte carlo method Special methods 

Analytical or numerical 

approach is involved 

 

 

 

 

Possible when the view 

factor equation for the 

surface can be represented 

by Cartesian, polar, 

spherical coordinates  

 

Participating medium 

consideration is possible  

 

Consideration of radiation 

scattering is not possible 

or rather complex 

 

Anisotropic material 

consideration is not 

possible  

 

 

Statistical approach is 

involved 

 

 

 

 

Possible for complex 

geometries as well as 

simple geometries. 

 

 

 

Participating medium is 

possible 

 

Consideration of radiation 

scattering is  possible 

 

 

Anisotropic material 

consideration is possible  

 

 

 

Complex mathematical 

treatment is avoided due 

simple geometry or 

availability of one or two 

view factors 

 

Not possible when the 

shape deviates from 

simple geometries such 

as rectangles, circles and 

triangles 

 

Participating medium is 

impossible 

 

N/A 

 

 

 

N/A 
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Table 2.1 (cont.) 

Direct integration 

method 

Monte carlo method Special methods 

Becomes complex when 

obstructs are involved in 

between surfaces 

 

Computing is cheap with 

respect to Monte carlo 

 

 

Time consumption is 

small for simpler shapes. 

But significant for 

complex. 

 

Numerical approach might 

encounter an error 

specially with close 

segments. 

Investigation with 

obstructed objects is 

possible 

 

Computationally 

expensive due to storage 

requirements 

 

Time consumption does 

not significantly or 

exponentially vary with 

the shape 

 

Sampling error is 

occurring as a noise 

N/A 

 

 

 

Computational 

techniques may not 

require due simple 

calculations.    

N/A 

 

 

 

 

Minimum error. 

 

 

 

By repeating Eq. 2.8 

 

  𝐹𝐹𝑖𝑖−𝑗𝑗 =  1
𝐴𝐴𝑖𝑖
∫ ∫

𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗
𝜋𝜋𝑆𝑆2 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖𝐴𝐴𝑗𝑗𝐴𝐴𝑖𝑖

 

 

With usual vector notation, it can be determined the vector for the segment i to j 

 

  𝑠𝑠𝑖𝑖𝑖𝑖 = �𝑥𝑥𝑗𝑗 −  𝑥𝑥𝑖𝑖�𝑖𝑖̂ +  �𝑦𝑦𝑗𝑗 −  𝑦𝑦𝑖𝑖�𝑗𝑗̂ + �𝑧𝑧𝑗𝑗 −  𝑧𝑧𝑖𝑖�𝑘𝑘� Eq. 2.9 
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And the normal vector 

 

 𝑛𝑛� = 𝑙𝑙𝑖𝑖̂ +  𝑚𝑚𝑗𝑗̂ +  𝑛𝑛𝑘𝑘�  Eq. 2.10 

 

Length of the vector between i and j is given by 

 

  �𝑠𝑠𝑖𝑖𝑖𝑖 �
2

=  �𝑠𝑠𝑗𝑗𝑗𝑗 �
2

 = 𝑆𝑆2  Eq. 2.11 

 

By considering vector algebra following equations can be achieved 

 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 =  𝑛𝑛
�𝑖𝑖 .𝑠𝑠𝑖𝑖𝑖𝑖
𝑆𝑆

=  1
𝑆𝑆
�(�𝑥𝑥𝑗𝑗 −  𝑥𝑥𝑖𝑖�𝑙𝑙𝑖𝑖 +  �𝑦𝑦𝑗𝑗 −  𝑦𝑦𝑖𝑖�𝑚𝑚𝑖𝑖 +  �𝑧𝑧𝑗𝑗 −  𝑧𝑧𝑖𝑖�𝑛𝑛𝑖𝑖�Eq. 2.12a 

 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗 =  𝑛𝑛
�𝑗𝑗 .𝑠𝑠𝑗𝑗𝑗𝑗
𝑆𝑆

=  1
𝑆𝑆
�(�𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑗𝑗 �𝑙𝑙𝑗𝑗 +  �𝑦𝑦𝑖𝑖 −  𝑦𝑦𝑗𝑗 �𝑚𝑚𝑗𝑗 +  �𝑧𝑧𝑖𝑖 −  𝑧𝑧𝑗𝑗 �𝑛𝑛𝑗𝑗 �Eq. 2.12b 

 

With applying these relations to eq. 2.8, it can be converted in to quadruple line 

integrations with applicable limits. 

 

2.3 DEA factor 

According to the definition of view factor equation 2.8, it can be seen that the 

integrated result is divided by area Ai . When a participating medium is present what 

will happen to this equation?. Furthermore, there will heat exchange between surface 

to volume and volume to volume. In that case defining a view factor for a gas is not 

possible. Because, the gas will have the shape of its containment. To avoid such 

difficulties, new concept called DEA was introduced[8]. Where it is defined by 

 

  𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =  𝑠𝑠𝑗𝑗𝑠𝑠𝑖𝑖���� =   ∫ ∫
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗

𝜋𝜋𝑆𝑆2 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖𝐴𝐴𝑗𝑗𝐴𝐴𝑖𝑖
 Eq. 2.13 

 

This technique can be further extended to cater for the participating medium 

resulting following equations. 
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 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =  𝑠𝑠𝑗𝑗𝑠𝑠𝑖𝑖���� =   ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗
𝜋𝜋𝑆𝑆2 𝑑𝑑𝑑𝑑𝑗𝑗 𝑑𝑑𝑑𝑑𝑖𝑖𝐴𝐴𝑗𝑗𝐴𝐴𝑖𝑖

 for surface to surface Eq. 2.14 

 

 𝑔𝑔𝑖𝑖𝑠𝑠𝑗𝑗����� =  𝑠𝑠𝑗𝑗𝑔𝑔𝑖𝑖����� =   ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗
𝜋𝜋𝑆𝑆2 𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖𝐴𝐴𝑗𝑗𝑉𝑉𝑖𝑖

   for surface to volume Eq. 2.15   

 

 𝑔𝑔𝑖𝑖𝑔𝑔𝑗𝑗������ =  𝑔𝑔𝑗𝑗𝑔𝑔𝑖𝑖������ =   ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘 𝑘𝑘2

𝜋𝜋𝑆𝑆2 𝑑𝑑𝑑𝑑𝑗𝑗 𝑑𝑑𝑑𝑑𝑖𝑖𝑣𝑣𝑗𝑗𝑉𝑉𝑖𝑖
   for volume to volume Eq. 2.16 

 

It is obvious that, when there is no participating medium, k becomes zero. This will 

leads to all gisj values and gigj values to be zero and Eq. 2.14 becomes Eq. 2.13. 

Furthermore, transmission factor e-ks becomes 1 indicates that all the emitted 

radiation from one surface towards other surface will receive without any 

interference. The appearance of participating medium will make the analytical 

approach more difficult. It definitely needs mathematical treatment to reduce its 

complexity.  

 

There are many literatures to obtain view factors between perpendicular surfaces and 

parallel surfaces in graphical format. Appendix 1 shows such example for view 

factor estimation.  

 

2.4  Zonal Method 

With the knowledge of Eq 2.14, 2.15, 2.16, DEA factors can be estimated. If a 

furnace is considered, there are different sections inside that large volume. Heat 

generating or heat incoming section, combust gas emission to the chimney section, 

combust gas leaking to the environment sections, object locating section are some 

examples of different sections with different temperatures. Therefore, estimation of 

heat transfer between two walls by assuming the wall as one complete surface or 

estimation of heat transfer between the complete volumes to wall is not viable. 

Furthermore, according to the Eq 2.2 it can be seen that absorptivity can be changed 

according to the temperature. Not only that, but also emissivity tends to change with 
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the temperature and pressure [9]. Due to these reasons, there is a necessity to divide 

the furnace into isothermal areas or volumes where the thermal properties remain 

unchanged. This method is called zonal method and it was developed[10]. According 

this method complete enclosure is divided into number of isothermal surfaces and 

volumes. The heat transfer between each every surface and volumes will be 

accounted separately. This will leads to several sets of equations for surface to 

surface, surface to volume, and volume to volume cases. 

Incorporating eq. 2.14, eq. 2.15 and 2.16 into zonal method will leads to following 

set of equations for ith volume zone and surface zone  

 

 𝑄𝑄𝑠𝑠𝑠𝑠 =  𝜀𝜀𝑖𝑖𝐴𝐴𝑖𝑖𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏 −  ∑ 𝑆𝑆𝑖𝑖𝑆𝑆𝑗𝑗�����𝑁𝑁
𝑗𝑗=1 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏 −  ∑ 𝑆𝑆𝑖𝑖𝐺𝐺𝑘𝑘������𝐾𝐾

𝑚𝑚=1 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏  Eq. 2.17 

 

𝑄𝑄𝑔𝑔𝑔𝑔 =  4𝑘𝑘𝑉𝑉𝑖𝑖𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏 −  ∑ 𝐺𝐺𝑖𝑖𝑆𝑆𝑗𝑗�����𝑁𝑁
𝑗𝑗=1 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏 −  ∑ 𝐺𝐺𝑖𝑖𝐺𝐺𝑘𝑘������𝐾𝐾

𝑚𝑚=1 𝐸𝐸𝑏𝑏𝑏𝑏𝑏𝑏  Eq. 2.18 

 

Considering the fact that DEA does not depend on the temperature and for a 

isothermal enclosure, Eq 2.17 and 2.18 will convert to 

 

  𝐴𝐴𝑖𝑖 =   ∑ s𝑖𝑖𝑠𝑠𝑗𝑗����𝑁𝑁
𝑗𝑗=1 +  ∑ 𝑠𝑠𝑖𝑖𝑔𝑔𝑘𝑘������𝐾𝐾

𝑚𝑚=1   Eq. 2.19 

 

  4𝑘𝑘𝑉𝑉𝑖𝑖 =   ∑ g𝑖𝑖𝑔𝑔𝑚𝑚�������𝑘𝑘
𝑚𝑚=1 +  ∑ 𝑠𝑠𝑗𝑗𝑔𝑔i�����𝑁𝑁

𝑗𝑗=1  Eq. 2.20 

 

Where N represents number of surfaces and the m represents number of volumes. In 

order to proceed more with Eq. 2.17 and 2.18 DEA factors for surface to surface, 

surface to volume and volume to volume should be found.  

 

 𝑺𝑺𝑺𝑺 =  
𝑠𝑠1𝑠𝑠1����� … 𝑠𝑠1𝑠𝑠𝑁𝑁������
⋮ ⋱ ⋮

𝑠𝑠𝑁𝑁𝑠𝑠1������ … 𝑠𝑠𝑁𝑁𝑠𝑠𝑁𝑁������
  Eq. 2.21 

 

𝑺𝑺𝑺𝑺 =  
𝑠𝑠1𝑔𝑔1������ … 𝑠𝑠1𝑔𝑔𝑘𝑘������
⋮ ⋱ ⋮

𝑠𝑠𝑁𝑁𝑠𝑠1������ … 𝑠𝑠𝑁𝑁𝑠𝑠𝑘𝑘������
 Eq. 2.22 
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𝑮𝑮𝑮𝑮 =  
𝑔𝑔1𝑔𝑔1������ … 𝑔𝑔1𝑔𝑔𝑘𝑘������
⋮ ⋱ ⋮

𝑔𝑔𝑘𝑘𝑔𝑔1������ … 𝑔𝑔𝑘𝑘𝑔𝑔𝑘𝑘�������
 Eq. 2.23 

 

By evaluating SS, SG, GG matrices the task can be fulfilled.  

 

 𝑺𝑺 =  𝑺𝑺𝑺𝑺. 𝜺𝜺 Eq. 2.24 

 

  𝜺𝜺𝒃𝒃𝒃𝒃 =  
𝜀𝜀1
⋮
𝜀𝜀𝑁𝑁

 Eq. 2.25 

 

Eq. 2.25 will include the emissivity values in to the system.  

 

If a rectangular furnace is considered, definitely it should have six surfaces. For a 

furnace designer or a person who wish to evaluate the heat transfer performance or 

for most effective heat transfer zone identification for place the object, he or she 

should find DEA values of all zones. Furthermore, at design stage, length, width and 

height of the furnace is an open question, provided that object fits on to the furnace. 

If one of these changed everything changes.Therefore, there is a necessity for a 

procedure to obtain SS, SG, GG matrices, while maintaining the repetitiveness, user 

defined zone size, accurate and user friendly. 
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3.METHODOLOGY 

In order to achieve the objectives following methodology will be proceeded. Based 

on the literature survey, a suitable DEA estimation technique will be identified for 

rectangular enclosures. The identified DEA estimation technique will be applied to 

develop a mathematical model to represent a rectangular enclosure. The developed 

mathematical model will be converted in to user friendly system while having user 

requirements as inputs. Finally outcomes will be validated through testing of various 

input variables.  

3.1 Selection of DEA estimation technique 

It can be observed that Monte Carlo and direct integration are the available 

techniques to estimate DEA values which is shown in table 2.1. In order to select one 

method, features of the selected enclosure should be concerned. 

A rectangular enclosure is having following features 

• Simple in geometry, only six rectangular surfaces. 

• Participating medium should be considered when estimating heat transfer. 

• Most of the insulation materials are having isotropic properties. 

• Surfaces can be approximated as grey and diffuse. 

• Scattering of participating medium can be neglected while having sufficient 

accurateness 

• Participating medium does not have reflectance or considered as grey gas. 

• Possible to assume absorption and emission is equal with grey condition[2]. 
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Figure 3.1: Comparison of time consumption between Monte Carlo and 

conventional methods 

( Source : [5]) 

Having considered table 2.1 and figure 3.1 with above mentioned inherent features of 

a rectangular type enclosure, it can be justified that conventional method or direct 

integration method is more applicable to deal with DEA estimation.  

 

 

3.2 Identification of inputs 

An algorithm or procedure to determine SS, SG, GG matrices should be able to 

satisfy simplicity, repetitiveness, accuracy dependent and user friendliness 

requirements. Therefore, identification of inputs for such system is an essential 

feature. Consider the equations 2.14, 2.15 and 2.16. It is evident that whole set of 

equations are dependent of k value and zone coordinates (s, cosθ, A, V). Therefore, 

k value should be considered as an input to the system. By varying k value will 

introduce different status of the enclosure. Secondly, introducing zone coordinate as 

an input to the system will make sure variation of zones. Zone coordinates can be 
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obtained by considering the total enclosure dimensions (in x, y, z axis) and number 

of divisions along each dimensions (in x, y, z). By having both enclosure dimensions 

and number of divisions as inputs to the system will make sure that the derived 

algorithm will have the capability cater for user requirements in flexible manner. 

 

3.3 Derivation of computable equations 

Firstly, basic equations 2.14, 2.15, 2.16 should be converted in to simpler integral 

form by using vector algebra. The set of equations should be able to represent the 

complete furnace with its boundary conditions.  

 

Consider figure 3.1 which has several zones. 

 

 

Figure 3.2: example of dividing furnace enclosure into several zones 
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The alignment of coordinate system can be done by choosing z = 0 plane, y = 0 

planeand x = 0 plane. All other furnace walls can be represented by using this 

coordinate system and applying the length, width and height dimensions to y, x, z 

planes respectively. Having defined the coordinate system, vector algebra application 

for Eq. 2.14, 2.15, 2.16 can be continued. Suppose bottom surface is i and left 

surface is j.  

According to eq. 2.10 𝑛𝑛�𝑖𝑖 =  𝑘𝑘�  and  𝑛𝑛�𝑗𝑗 =  𝑖𝑖̂ for z=0 and x=0 planes. With these 

normal vector values 2.12a and 2.12b can be determined as  

  

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑖𝑖 =  𝑛𝑛
�𝑖𝑖 .𝑠𝑠𝑖𝑖𝑖𝑖
𝑆𝑆

=  1
𝑆𝑆
��𝑧𝑧𝑗𝑗 −  𝑧𝑧𝑖𝑖��  =  1

𝑆𝑆
��𝑧𝑧𝑗𝑗 −  0�� Eq. 3.1a 

 

 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑗𝑗 =  𝑛𝑛
�𝑗𝑗 .𝑠𝑠𝑗𝑗𝑗𝑗
𝑆𝑆

=  1
𝑆𝑆
��𝑥𝑥𝑖𝑖 −  𝑥𝑥𝑗𝑗 ��  =  1

𝑆𝑆
⌊(𝑥𝑥𝑖𝑖 −  0)⌋ Eq. 3.1b 

  

 

Furthermore, small area element of z = 0 plane can be given by dAi = dxi.dyi and 

small area element of x = 0 plane can be given by dAj = dyjdzj. Let the length is to 

be divided into n1 segments, width is to be divided into n2 segments and height is to 

be divided into n3 segments. This will define the number of surface zones and 

number of volume zones for zonal method application. Once n1, n2 and n3 values 

are defined total number of surface zones in rectangular surface will be (n1 x n2 + n2 

x n3 + n3 x n1) x 2. Total number of volume zones will be n1 x n2 x n3 

 

With the aid of all above information, the equation for DEA between one surface 

zone of the bottom surface into another surface zone of left surface can be 

transformed into following format for bottom to left surface. 

 

𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =    ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧2
𝑧𝑧𝑧𝑧1

𝑦𝑦𝑦𝑦 2
𝑦𝑦𝑦𝑦 1

𝑧𝑧𝑗𝑗 𝑥𝑥𝑖𝑖
𝜋𝜋𝑆𝑆4 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖

𝑦𝑦𝑦𝑦2
𝑦𝑦𝑦𝑦1

𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1 𝑑𝑑𝑑𝑑𝑖𝑖  Eq. 3.2a 

 



18 
 

  Where   𝑆𝑆 =  �𝑥𝑥𝑖𝑖2 + �𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑖𝑖�
2

+ 𝑧𝑧𝑗𝑗2�
1/2

and k value should be provided as an input. 

Furthermore, the difference between the upper limit and the lower limit of the 

integral represents the step size or zone size along that particular axis. 

 

Similar fashion can be followed to obtain the equation for the DEA between top 

surface to left surface. Due to the similarity, the equation will be look like same. 

However, the boundary condition of the furnace wall will be represented in the 

equation with respect to the coordinate system. 

 

𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =    ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧2
𝑧𝑧𝑧𝑧1

𝑦𝑦𝑦𝑦 2
𝑦𝑦𝑦𝑦 1

(ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡−𝑧𝑧𝑗𝑗 )𝑥𝑥𝑖𝑖
𝜋𝜋𝑆𝑆4 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖

𝑦𝑦𝑦𝑦2
𝑦𝑦𝑦𝑦1

𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1 𝑑𝑑𝑑𝑑𝑖𝑖  Eq. 3.2b 

 

Since, the rectangular furnaces are axis symmetry, obtaining the DEAs between 

bottom surface to left surface will sufficient to obtain the respect values for top to left 

surface with using the concept of mirror image. However, the coordinate values will 

be changed.  

 

Reciprocity relation of DEAs will reduce the amount of effort which has to be done 

on repeating the calculations. Having considered these factors, it can be identified 

that there will be 12 such relations in the format of equation 3.2a and 3.2b to 

represent all perpendicular surfaces in a rectangular furnace. There will be 3 other 

relations to represent parallel surface to surface exchange areas. By applying the 

same concept which is shown in Eq. 3.2a integral form can be developed for top to 

bottom surfaces. 

 

 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =    ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1

𝑦𝑦𝑦𝑦 2
𝑦𝑦𝑦𝑦 1

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡2

𝜋𝜋𝑆𝑆4 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖
𝑦𝑦𝑦𝑦2
𝑦𝑦𝑦𝑦1

𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1 𝑑𝑑𝑑𝑑𝑖𝑖  Eq. 3.3 

 

 Similarly, other surface to surface parallel exchange area relations can be obtained. 

With the set of equations in the format of 3.2 and 3.3 all fundamental integral form to 

determine surface to surface DEAs can be identified.  
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Figure 3.3: surface zone labeling in a furnace enclosure 

 

Observing figure 3.2, it can be seen that N x N number of DEAs should be found 

theoretically to represent all surface to surface DEA factors. Due to area factors in 

between zones in same plane zero, the number of determinations will be reduced.  

 

By applying same kind of mathematical treatment on Eq. 2.15 which can be 

converted into following integral form. 

For bottom surface zone into volume zone 

 

𝑔𝑔𝑖𝑖𝑠𝑠𝑗𝑗����� =    ∫ ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1

𝑦𝑦𝑦𝑦 2
𝑦𝑦𝑦𝑦 1

𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1

𝑧𝑧𝑖𝑖
𝜋𝜋𝑆𝑆3 𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖

𝑦𝑦𝑦𝑦2
𝑦𝑦𝑦𝑦1

𝑧𝑧𝑧𝑧2
𝑧𝑧𝑧𝑧1 𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖  Eq. 3.4 

 

If there are N number of surface zones and k number of volume zones in the 

enclosure, then there will be a N x K matrix which has to be determined. 

For volume to volume zones 

 

 𝑔𝑔𝑖𝑖𝑔𝑔𝑗𝑗������ =    ∫ ∫ ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1

𝑦𝑦𝑦𝑦 2
𝑦𝑦𝑦𝑦 1

𝑧𝑧𝑧𝑧2
𝑧𝑧𝑧𝑧1

𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1

𝑘𝑘2

𝜋𝜋𝑆𝑆2 𝑑𝑑𝑑𝑑𝑗𝑗 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗 𝑑𝑑𝑑𝑑𝑖𝑖
𝑦𝑦𝑦𝑦2
𝑦𝑦𝑦𝑦1

𝑧𝑧𝑧𝑧2
𝑧𝑧𝑧𝑧1 𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖  Eq. 3.5 

 

If there are K number of volume zones available in the enclosure. Then there will be 

a K x K matrix which has to be determined. 

 

 

 

 

 

 

 

 

1 

N 

4 3 

2 n2 

n3 

n1 



20 
 

Although, the integral form in equation 2.14, 2.15 and 2.16 is simplified for a furnace 

(Eq. 3.2, 3.3 and 3.4), still analytical evaluation is a tedious task since evaluation 

includes above four integrals. Even software focused on mathematical calculations 

find it difficult to estimate at least up to second exponential integral.  

 

 

Figure 3.4: estimation of  a sample of equation 3.2 usingMatlab 

 

Figure 3.3 shows how much it is difficult for evenMatlab software to estimatesimpler 

version of required formula. 

 

A method for reducing double integrals in to two single integrals has been performed 

[11] . According to that 

 

 𝐼𝐼 =  ∫ ∫ 𝑓𝑓(𝑥𝑥 − 𝑦𝑦)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 =  ∫ 𝑧𝑧𝑧𝑧(𝑧𝑧 − 𝑎𝑎)𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 + 𝑎𝑎 ∫ 𝑓𝑓(𝑧𝑧 − 𝑎𝑎)𝑑𝑑𝑑𝑑 +𝑏𝑏
𝑎𝑎

𝑎𝑎
0

𝑏𝑏
0

𝑎𝑎
0

                      ∫ (𝑎𝑎 + 𝑏𝑏 − 𝑧𝑧)𝑓𝑓(𝑧𝑧 − 𝑎𝑎)𝑑𝑑𝑑𝑑𝑎𝑎+𝑏𝑏
𝑏𝑏    Eq. 3.6 

 

By repeating Eq. 2.9 

 

𝑠𝑠𝑖𝑖𝑖𝑖 = �𝑥𝑥𝑗𝑗 −  𝑥𝑥𝑖𝑖�𝑖𝑖̂ +  �𝑦𝑦𝑗𝑗 −  𝑦𝑦𝑖𝑖�𝑗𝑗̂ + �𝑧𝑧𝑗𝑗 −  𝑧𝑧𝑖𝑖�𝑘𝑘�  
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A function based on sij can be converted in to Eq. 3.6 format. In a furnace when two 

perpendicular surfaces are considered, always one axis will be common to both 

surfaces. That part can be reduced with Eq. 3.6 scheme and reduced in to triple 

integral rather than quadruple integral.  

By repeating Eq. 3.2a  

 

 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =    ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧2
𝑧𝑧𝑧𝑧1

𝑦𝑦𝑦𝑦 2
𝑦𝑦𝑦𝑦 1

𝑧𝑧𝑗𝑗 𝑥𝑥𝑖𝑖
𝜋𝜋𝑆𝑆4 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖

𝑦𝑦𝑦𝑦2
𝑦𝑦𝑦𝑦1

𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1 𝑑𝑑𝑑𝑑𝑖𝑖  

 

can be converted to 

 

𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =    ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘𝑧𝑧𝑧𝑧1+∆zj
𝑧𝑧𝑧𝑧1

𝑦𝑦𝑦𝑦 1+∆𝑦𝑦𝑦𝑦
𝑦𝑦𝑦𝑦 1

𝑧𝑧𝑗𝑗 𝑥𝑥𝑖𝑖
𝜋𝜋𝑆𝑆4 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖

𝑦𝑦𝑦𝑦1+∆yi
𝑦𝑦𝑦𝑦1

𝑥𝑥𝑥𝑥1+∆xi
𝑥𝑥𝑥𝑥1 𝑑𝑑𝑑𝑑𝑖𝑖  Eq. 3.7 

 

Where Δ values represent the step sizes of the zone along each axis. By variable 

transformation this can be converted to 

𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =    ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘∆zj
0

∆𝑦𝑦𝑦𝑦
0

𝑧𝑧2𝑥𝑥1
𝜋𝜋𝑆𝑆4 𝑑𝑑𝑑𝑑2𝑑𝑑𝑑𝑑2𝑑𝑑𝑑𝑑1

∆yi
0

∆xi
0 𝑑𝑑𝑑𝑑1 Eq. 3.8 

 

 

Where   

   𝑥𝑥1 =  𝑥𝑥𝑖𝑖 − 𝑥𝑥𝑖𝑖1 

   𝑦𝑦1 =  𝑦𝑦𝑖𝑖 − 𝑦𝑦𝑖𝑖1 

   𝑦𝑦2 =  𝑦𝑦𝑗𝑗 − 𝑦𝑦𝑗𝑗1 

   𝑧𝑧2 =  𝑧𝑧𝑗𝑗 − 𝑧𝑧𝑗𝑗1 

  𝑆𝑆 =  �(𝑥𝑥i1 + 𝑥𝑥1)2 + �𝑦𝑦𝑗𝑗1 − 𝑦𝑦𝑖𝑖1 + 𝑦𝑦2 − 𝑦𝑦1�
2

+ �𝑧𝑧j1 + 𝑧𝑧2�
2
�

1/2
[12] 

 

This can be converted by using Eq 3.6 

 

 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =

        ∫ ∫ �∫ (∆𝑦𝑦𝑖𝑖 + 𝑦𝑦) 𝑒𝑒−𝑘𝑘𝑘𝑘0
−∆𝑦𝑦𝑦𝑦

𝑧𝑧2𝑥𝑥1
𝜋𝜋𝑆𝑆4 dy + ∫ (∆𝑦𝑦𝑗𝑗 −  𝑦𝑦)𝑒𝑒−𝑘𝑘𝑘𝑘∆𝑦𝑦𝑦𝑦

0
𝑧𝑧2𝑥𝑥1
𝜋𝜋𝑆𝑆4 dy�∆xi

0
∆zj

0 𝑑𝑑𝑑𝑑1𝑑𝑑𝑑𝑑2 

   Eq. 3.9 
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Where y = y2 – y1 

By repeating Eq. 3.3 for parallel planes 

 

 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� =    ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1

𝑦𝑦𝑦𝑦 2
𝑦𝑦𝑦𝑦 1

ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡2

𝜋𝜋𝑆𝑆4 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖
𝑦𝑦𝑦𝑦2
𝑦𝑦𝑦𝑦1

𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1 𝑑𝑑𝑑𝑑𝑖𝑖  

And 

 𝑆𝑆 =  ��𝑥𝑥2 − x1 + 𝑥𝑥𝑗𝑗1 − 𝑥𝑥i1�
2

+ �𝑦𝑦𝑗𝑗1 − 𝑦𝑦𝑖𝑖1 + 𝑦𝑦2 − 𝑦𝑦1�
2

+ (height)2�
1/2

 

 

In this case it can be seen that two common axis exists for the planes. Therefore 

quadruple integral can be reduced in to double integral. By using similar kind of 

transformations used in Eq. 3.7, 3.8 and 3.9, the resulting equation would be 

 

 

 

 𝑠𝑠𝑖𝑖𝑠𝑠𝑗𝑗���� = ∫ ∫ (∆yi + y)(∆xi + x)0
−∆yi

0
−∆xi 𝑒𝑒−𝑘𝑘𝑘𝑘 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

2

𝜋𝜋𝑆𝑆4  dxdy +  

∫ ∫ (∆yi +    y)(∆xi − x)0
−∆yi

∆xj
0 𝑒𝑒−𝑘𝑘𝑘𝑘 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡

2

𝜋𝜋𝑆𝑆4 dxdy +                       ∫ ∫ (∆yi −∆yj
0

0
−∆xi

y)(∆xi +    x) 𝑒𝑒−𝑘𝑘𝑘𝑘 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡
2

𝜋𝜋𝑆𝑆4  dxdy +                       ∫ ∫ (∆yi − y)(∆xi −∆yj
0

∆xj
0

  x) 𝑒𝑒−𝑘𝑘𝑘𝑘 ℎ𝑒𝑒𝑒𝑒𝑒𝑒ℎ𝑡𝑡
2

𝜋𝜋𝑆𝑆4  dxdy      

  Eq. 3.10 

 

By repeating Eq. 3.4 for volume to surface zone 

 

 𝑔𝑔𝑖𝑖𝑠𝑠𝑗𝑗����� =    ∫ ∫ ∫ ∫ ∫ 𝑒𝑒−𝑘𝑘𝑘𝑘𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1

𝑦𝑦𝑦𝑦 2
𝑦𝑦𝑦𝑦 1

𝑥𝑥𝑥𝑥2
𝑥𝑥𝑥𝑥1

𝑧𝑧𝑖𝑖
𝜋𝜋𝑆𝑆3 𝑘𝑘𝑘𝑘𝑘𝑘𝑗𝑗 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑖𝑖

𝑦𝑦𝑦𝑦2
𝑦𝑦𝑦𝑦1

𝑧𝑧𝑧𝑧2
𝑧𝑧𝑧𝑧1 𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖  

 

And 

 𝑆𝑆 =  ��𝑥𝑥2 − x1 + 𝑥𝑥𝑗𝑗1 − 𝑥𝑥i1�
2

+ �𝑦𝑦𝑗𝑗1 − 𝑦𝑦𝑖𝑖1 + 𝑦𝑦2 − 𝑦𝑦1�
2

+ (z1 + zi1)2�
1/2
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In this case, similar to Eq. 3.10 two axis will be parallel. However, one additional 

axis will remain. Therefore, similar pattern can be expected with additional integral. 

 

𝑔𝑔𝑖𝑖𝑠𝑠𝑗𝑗����� = ∫ �∫ ∫ (∆yi + y)(∆xi + x)0
−∆yi

0
−∆xi 𝑒𝑒−𝑘𝑘𝑘𝑘 zi

𝜋𝜋𝑆𝑆3  kdxdy +  ∫ ∫ (∆yi +0
−∆yi

∆xj
0

∆zi
0

                          y)(∆xi − x) 𝑒𝑒−𝑘𝑘𝑘𝑘 zi
𝜋𝜋𝑆𝑆3 kdxdy + ∫ ∫ (∆yi − y)(∆xi +∆yj

0
0
−∆xi

                           x) 𝑒𝑒−𝑘𝑘𝑘𝑘 zi
𝜋𝜋𝑆𝑆3  kdxdy +

                       ∫ ∫ (∆yi −                            y) x)∆yj
0

∆xj
0 𝑒𝑒−𝑘𝑘𝑘𝑘 zi

𝜋𝜋𝑆𝑆3  kdxdy� dz1  

       

 Eq. 3.11 

 

By repeating Eq. 3.5 

 

𝑔𝑔𝑖𝑖𝑔𝑔𝑗𝑗������ =    � � � � � � 𝑒𝑒−𝑘𝑘𝑘𝑘
𝑥𝑥𝑥𝑥2

𝑥𝑥𝑥𝑥1

𝑦𝑦𝑦𝑦 2

𝑦𝑦𝑦𝑦 1

𝑧𝑧𝑧𝑧2

𝑧𝑧𝑧𝑧1

𝑥𝑥𝑥𝑥2

𝑥𝑥𝑥𝑥1

𝑘𝑘2

𝜋𝜋𝑆𝑆2 𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗𝑑𝑑𝑑𝑑𝑗𝑗 𝑑𝑑𝑑𝑑𝑖𝑖
𝑦𝑦𝑦𝑦2

𝑦𝑦𝑦𝑦1

𝑧𝑧𝑧𝑧2

𝑧𝑧𝑧𝑧1
𝑑𝑑𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑𝑖𝑖 

 

Following the same style as above 

 

 

 

 𝑔𝑔𝑖𝑖𝑔𝑔𝑗𝑗������ =  ∫ ∫ ∫ (∆xi + x)(∆yi + y)0
−∆zi (∆zi + z)0

−∆yi
0
−∆xi 𝑒𝑒−𝑘𝑘𝑘𝑘 k2

𝜋𝜋𝑆𝑆2  dzdydz +

                            ∫ ∫ ∫ (∆xi − x)(∆yi + y)0
−∆zi (∆zi + z)0

−∆yi
∆xj

0 𝑒𝑒−𝑘𝑘𝑘𝑘 k2

𝜋𝜋𝑆𝑆2 dzdydx +

                           ∫ ∫ ∫ (∆xi + x)(∆yi − y)0
−∆zi (∆zi + z)∆yj

0
0
−∆xi 𝑒𝑒−𝑘𝑘𝑘𝑘 k2

𝜋𝜋𝑆𝑆2  dzdydx +

                          ∫ ∫ ∫ (∆xi − x)0
−∆zi (∆yi − y)(∆zi + z)∆yj

0
∆xj

0 𝑒𝑒−𝑘𝑘𝑘𝑘 k2

𝜋𝜋𝑆𝑆2  dzdydx +

                         ∫ ∫ ∫ (∆xi + x)(∆yi + y)∆zj
0 (∆zj − z)0

−∆yi
0
−∆xi 𝑒𝑒−𝑘𝑘𝑘𝑘 k2

𝜋𝜋𝑆𝑆2  dzdydz +

                        ∫ ∫ ∫ (∆xi − x)(∆yi + y)0
−∆zi (∆zj − z)0

−∆yi
∆xj

0 𝑒𝑒−𝑘𝑘𝑘𝑘 k2

𝜋𝜋𝑆𝑆2 dzdydx +

                      ∫ ∫ ∫ (∆xi + x)(∆yi − y)0
−∆zi (∆zj − z)∆yj

0
0
−∆xi 𝑒𝑒−𝑘𝑘𝑘𝑘 k2

𝜋𝜋𝑆𝑆2  dzdydx +

                     ∫ ∫ ∫ (∆xi − x)0
−∆zi (∆yi − y)(∆zj − z)∆yj

0
∆xj

0 𝑒𝑒−𝑘𝑘𝑘𝑘 k2

𝜋𝜋𝑆𝑆2  dzdydx Eq. 3.12 
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Although amount of integral has been reduced, still the direct evaluation of Eq. 3.9, 

3.10, 3.11, 3.12 equations are not possible 

 

For this, Simpson’s rule has been applied on the 3.9 to 3.12 equations. 

The equation for Simpson rule is as follows 

 

∫ 𝑓𝑓(𝑥𝑥)𝑑𝑑𝑑𝑑  ≈  ∆𝑥𝑥
3

(𝑦𝑦0 + 4𝑦𝑦1 + 2𝑦𝑦2 + ⋯+ 4𝑦𝑦𝑛𝑛−1 + 𝑦𝑦𝑛𝑛
𝑏𝑏
𝑎𝑎 )[13] Eq. 3.13 

 

Although the Simpson’s rule has been derived for single variable function, still it is 

valid for multi variables as long as they behave independently. The accuracy of the 

result depends on the size of Δx. For each and every variable, Simpson’s rule should 

be applied separately. 

 

After employing numerical techniques, the results obtained should be compared with 

globally available results to validate its accurateness. Also, the error percentage 

should be estimated to identify the variation of errors during calculations. However, 

most of the literatures do not provide values for DEAs. It is well understood the 

reason that DEA is depend on the area selected by the user. Furthermore, many 

literatures avoid the participating medium due to its complexity and the absorption 

and emission is varied with the temperature and pressure. Reasonable amount of 

accurate checking could be done by neglecting transmission factor and converting 

area factor in to view factor. Moreover, Eq. 2.20 and 2.19 can be used for cross 

check for accurateness. 
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4. RESULTS 

4.1 Structure for the program to determine DEAs 

In this studyMatlab[14]has been used due to its extensive support on mathematical 

techniques. The algorithm structure for evaluating result is given below. 

 

 Identify the two surfaces whose area factors need to be evaluated and 

determine the basic equation by using equation 3.2 obtaining criteria. 

 

 Obtaining the data from the user in to the interface. Furnace dimensions 

(length, width, height), number of divisions expected (n1, n2, n3 later to be 

align with any of x, y, z axis) and absorption coefficient variable. 

 

 Defining the coordinate system and align with three edges. Align with bottom 

left corner would be easy to avoid the issues which might come when the 

coordinates become negative. 

 

 Dividing furnace dimension by number of divisions to obtain number of 

zones expected for the model. This can be considered as the step size of the 

model. 

 

 Determine the coordinates of the corners of the surface zones (four corners). 

All the coordinate points of surface zone edges can be obtained through an 

iteration procedure using the step sizes along each axis. 

 

 During each and every iteration, there should be another set of iterations to 

obtain the coordinate points of the other surface. (each and every surface zone 

is interacting with each and every other surface zone of the wall)      

 

 Once a set of coordinates of two particular surface zones are found during the 

iteration from both surfaces, Simpson’s rule can be applied for modified 
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equation 3.9, with the limits as the coordinates of the surface zone, to 

evaluate the direct area exchange. 

 

As mentioned in above, for each and every set of coordinate, there should be separate 

application of Simpson’s ruleduring the evaluation.  

 

This should be continued until the complete wall is covered by surface zones.This 

procedure is valid for both perpendicular and parallel surfaces.There is no significant 

difference between estimating surface to surface DEAs and other two situations 

(surface to gas and gas to gas) except the change of number of integrals. Therefore, 

the number of coordinates and number of iterations will be increased. 

 

Appendix 2 will be illustrating such a program to obtain DEA between bottom 

surface and left surface. However, the author has used “triplequad” command in 

matlab, which is used to perform triple integration using numerical techniques for 

simplicity. Performing the evaluation using Simpson’s rule has been provided in 

appendix 3 as an comment for readers who wish to perform this evaluation using 

other software. The basic structure of the program has been modified such a way that 

estimated coordinate points of surfaces and the estimated DEA value to be stored in 

an excel file for the data to be used. 

 

4.2 Validation 

Following table illustrates such example of bottom to left zones. The inputs are 

length 2m, width 2m, height 2m, number of zones required in each axis is 2.The 

reference values for the comparison, were obtained from web page, 

http://www.thermalradiation.net/calc/sectionc/C-15.html [15]. 
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With the comparison it can be observed that, this procedure is having maximum 

accuracy up to 0.0001 for all cases.For the comparison, it has been taken up to fourth 

decimal place. If there is a necessity to go deeply, result data type should be changed. 

 

Same calculation was performed for parallel surfaces and the result is attached in 

appendix 3. It can be observed that the error percentage of the calculated result is 

zero for every case with respect to considered reference. 

 

Considering transmission factor as 0.5, furnace dimension 2m, 2m, 2m and number 

of segments along each axis is 2, the resulting data will be stored in 15 spread sheets. 

Such example of obtainingDEA values bottom left surface zone to other zones given 

under Table 4.2 

 

Table 4.2: DEA values for bottom, left, front corner surface all 24 surfaces 

zones 

Surface X0 X1 Y0 Y1 Z0 Z1 DEA 

Left 0 0 0 1 0 1 0 

Left 0 0 1 2 0 1 0 

Left 0 0 0 1 1 2 0 

Left 0 0 1 2 1 2 0 

Right 2 2 0 1 0 1 0.0243 

Right 2 2 1 2 0 1 0.0157 

Right 2 2 0 1 1 2 0.0157 

Right 2 2 1 2 1 2 0.0105 

Bottom 0 1 0 1 0 0 0.1539 

Bottom 1 2 0 1 0 0 0.0151 
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Table 4.2 (Contd.) 

 

Surface X0 X1 Y0 Y1 Z0 Z1 DEA 

Bottom 0 1 1 2 0 0 0.0252 

Bottom 1 2 1 2 0 0 0.0078 

Front 0 1 0 0 0 1 0.1539 

Front 1 2 0 0 0 1 0.0151 

Front 0 1 0 0 1 2 0.0252 

Front 1 2 0 0 1 2 0.0078 

Back 0 1 2 2 0 1 0.0151 

Back 1 2 2 2 0 1 0.0117 

Back 0 1 2 2 1 2 0.0078 

Back 1 2 2 2 1 2 0.0074 

Top 0 1 0 1 0 0 0.0151 

Top 1 2 0 1 0 0 0.0117 

Top 0 1 1 2 0 0 0.0078 

Top 1 2 1 2 0 0 0.0074 

Total 0.5542 

 

 

DEA values for front, left, and bottom volume zone to surface zones with 

transmission factor equals to 0.5 have been given in Table 4.3. Coordinate of the 

volume zone would be [0 1 0 1 0 1] for all x, y, z axes respectively. 

 

Table 4.3: DEA values for bottom, left, front corner volume all 24 surfaces 

zones 

Surface X0 X1 Y0 Y1 Z0 Z1 DEA 

Left 0 0 0 1 0 1 0.2653 

Left 0 0 1 2 0 1 0.0437 

Left 0 0 0 1 1 2 0.0436 

Table 4.3 (Contd.) 
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Surface X0 X1 Y0 Y1 Z0 Z1 DEA 

Left 0 0 1 2 1 2 0.0141 

Right 1 2 0 1 0 1 0.0301 

Right 1 2 1 2 0 1 0.0168 

Right 1 2 0 1 1 2 0.0168 

Right 1 2 1 2 1 2 0.0103 

Bottom 0 1 0 1 0 0 0.2349 

Bottom 1 2 0 1 0 0 0.0434 

Bottom 0 1 1 2 0 0 0.0434 

Bottom 1 2 1 2 0 0 0.0141 

Front 0 1 0 0 0 1 0.2349 

Front 1 2 0 0 0 1 0.0434 

Front 0 1 0 0 1 2 0.0434 

Front 1 2 0 0 1 2 0.0141 

Back 0 1 2 2 0 1 0.0301 

Back 1 2 2 2 0 1 0.0168 

Back 0 1 2 2 1 2 0.0168 

Back 1 2 2 2 1 2 0.0103 

Top 0 1 0 1 0 0 0.0301 

Top 1 2 0 1 0 0 0.0168 

Top 0 1 1 2 0 0 0.0168 

Top 1 2 1 2 0 0 0.0103 

Total 1.3254 

 

 

DEA values for front, left, and bottom volume zone to other volume zones with 

transmission factor 0.5 have been given in Table 4.4.  

 

 

 

Table 4.2:  DEA values for bottom, left, front corner volume all 8 volume zones 
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Volume zone 

 number 

DEA 

1 0.3706 

2 0.0641 

3 0.0641 

4 0.0249 

5 0.0640 

6 0.0243 

7 0.0243 

8 0.0131 

Total 0.6494 

 

 

According to Eq. 2.20 

 

  4𝑘𝑘𝑉𝑉𝑖𝑖 =   ∑ g𝑖𝑖𝑔𝑔𝑚𝑚�������𝑘𝑘
𝑚𝑚=1 +  ∑ 𝑠𝑠𝑗𝑗𝑔𝑔i�����𝑁𝑁

𝑗𝑗=1  

 

Left side vale is equal to 2 (4 x 0.5 x 1). Meanwhile, right hand side sums up to 

1.9746. Error percentage of the total calculation is equal to 1.27% ((2-1.9746)/2 x 

100%) 

 

Although the validation has been performed for k = 0.5, it is necessary to find out 

whether the result holds its accuracy up to a reasonable level. 

 

 

 

 

 

 

 

Table 4.5: Error percentages for different k values 
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K value Calculated 

value 

Theoretical 

value 

Error % 

0.1 0.3967 0.4 0.8250 

0.2 0.7921 0.8 0.9875 

0.3 1.1870 1.2 1.0833 

0.4 1.5808 1.6 1.200 

0.5 1.9746 2.0 1.2700 

0.6 2.3663 2.4 1.4042 

0.7 2.7585 2.8 1.4821 

0.8 3.1492 3.2 1.5875 

0.9 3.5387 3.6 1.7028 

 

 

 
 

Figure 4.1: K value vs. percentage error 

From the plot it can be seen that when absorption coefficient is increased, then the 

model accuracy will decreased. However, still the result maintains more than 95% 

accurateness. 
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Further improvements of the developed program structure were done to hide all the 

informative programs where the designer may not interested. A software interface 

shown in figure 4.2, has been developed to serve the above purpose. 

 

 

 
Figure 4.2: Area factor calculator software interface 

 

The user needs to add relevant data into the software, which is based on matlab and 

press calculate button. Then the software will automatically calculate the DEA 

values and stored in excel files depend upon selection of the surface to surface or 

volume to surface or volume to volume selection. Once the data calculation is done 

and by pressing SS Matrix or GS Matrix of GG Matrix buttons, results for Eq. 2.21 

or 2.22 or 2.23 will be generated. This result can be directly used for further 

calculation of radiation heat transfer. 
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5. DISCUSSION 
 

Estimation of view factor is a difficult task due to involvement of complicated 

mathematics.Many literature can be found as graphical representation shown in 

appendix 5 or online calculators. In the real scenario where the participating medium 

comes to play, DEA should be estimated.Equations for estimate the DEA values 

have been introduced[10]. Further extension of these equations to represent 

rectangular enclosures using zonal method has been introduced under the same work. 

However, how the evaluation is being carried out when it contains exponential 

integral has not been developed under that work. The introduced set of equations 

requires quadruple integral for surface to surface DEA values, quintuple integrals for 

volume to surface DEA values and sextuple integrals for volume to volume DEA 

values. This needs an extensive of work plus higher time consumption for evaluation. 

Reducing of integration when the axis becomes parallel or common between two 

zones has been introduced[11]. The technique has been further extended to find 

DEAs for cylindrical enclosure[12]for certain scenarios. The ultimate requirement 

for the designer is to use results based on his requirements to estimate radiation heat 

transfer using zonal method and focus on other heat transferring modes rather than 

spending time and effort on estimating DEA value estimation.The developed 

software interface focus to aid furnace designers and performance evaluators to make 

judgments on radiation heat transfer in the system using evaluated DEA values.   

 

The program interface itself is having several features. The user has the freedom to 

alter the enclosure size according to his requirement. This can be done by varying 

first three inputs, length, width and height values. Next three inputs (n1, n2, n3) 

where zone size is determined, will enable the user to define his expected isothermal 

zones. By giving larger number for n1, n2, n3, higher number of zones can be 

achieved with higher calculation time. Obtaining higher number of zones will enable 

the user to introduce various features such as heat generation, heat leakage to the 

system for each zone while maintaining isothermal zone concept. However, 

introducing large number of zones into the system might not be effective due to two 
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reasons. Firstly, during the simple example it can be observed that closer segments 

have higher DEA value than far segments. Therefore, DEA value for far segment 

might become zero for many cases on the basis of decimal accuracy. Secondly, 

closer volume segments have self-irradiation, which will leads for singularity 

generation in DEA estimation. Optimized number of zones needed to be identified by 

the user considering his requirements. 

 

Once the result is obtained, next step of irradiation estimation can be continued. The 

added advantage of estimating DEA is to get an overall pictureregarding the heat 

transfer performance of that enclosure. For an example, if simplest version of DEA, 

view factor is considered, higher the view factor means higher possibility to transfer 

heat between both surfaces. The amount will be positive or negative with respect to 

the temperatures of the surfaces. Let us assume ith gas volume zone is having a heat 

generation source (eg: a burner). If s1si is higher (may be greater than 1 depending on 

the area) with respective to other, then it will be an indication there will be efficient 

heat transfer to s1 surface and it might have a higher temperature. By observing the 

DEA values one can predict the suitable location for the work piece, if the furnace is 

already available. If not, burner or heat input locations can be analyzed to achieve a 

uniform heat input to the object. 

 

Results for the simplest version of DEA, view factor has been proven with well 

established data.Moreover, Eq. 2.20 indicates that the total result consists of an error 

about 1.27%. This error basically comes due to self-irradiation of volume zones. 

Another possibility is the error incurred in numerical techniques. It is needed to be 

found that which plays the majority role and apply suitable solution to improve 

accuracy. Furthermore, it has been shown in figure 4.1 that the accuracy of the 

obtained results deviate more and more when k value rises. Although the correlation 

is identified for different k values, it is necessary to find out the ratio of volume to 

volume zones and volume to surface zone contribution to the generated error. 

 

As defined in literature review, this structure is to cater for rectangular enclosures 

whose surface materials and participating media are having non scattering, grey and 
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isotropic features. Further investigating should be done to include above features and 

included in to the software interface to provide much flexibility for the consumer. 

Performing DEA evaluation in the presence of obstruct can be suggested for a future 

work. However, according to table 2.1 and figure 2.2 it can be seen that when all 

these issues arises the problem becomes much complicated and better to move for 

Monte Carlo technique. 
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6. CONCLUSION 

For a furnace whose operating temperature is above 10000C, it is essential to develop 

radiation heat transfer model to understand the performance of the furnace. 

Obtaining radiation heat transfer model using zonal method requires DEA values for 

each and every zone. Such difficult task for rectilinear box shape furnace could be 

achieved by applying vector algebra and reduction integration scheme to general 

equations for the complete enclosure and simplify the resulting equations by using 

Simpson’s rule. Resulting computer program can handle rectilinear box shapes with 

any dimension with any transmission factor. Depend upon the accuracy requirement 

and the time constraint, the user is provided with the privilege to alter the zone size.  

 

The validation is done by using basic form of DEA (Viewfactor) and comparing the 

result with mathematically proven equation. Ways of reducing the error percentage is 

discussed in order to achieve better results is suggested for future work.  

 

Extension of this program to fine tune for garbage inputs from users, optimum 

amount of zones for reasonable accuracy, reducing time consumption has been 

suggested for further improvements. 
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8. APPENDICES 

Appendix 1: Emissivity values of different gases at different temperature and 
pressures 

[2] 
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Appendix 2: Sample DEA calculation for bottom to left surface 

function Output = perpendicular_Bo_L(length,width,height,n1,n2,n3,kT) 
 
% Obtaining the user inputs 
 
count = 0; 
 
stepX = width/n1; 
stepY = length/n2; 
stepZ = height/n3; 
 
% Defining the step size 
 
start_x = 0; 
start_y = 0; 
start_z = 0; 
 
 
 
 
for j = 1:n2 
for i = 1:n1 
pt_y(j).pt_x(i).z_0 = [ start_x, start_y, start_z;start_x, start_y+stepY, start_z;start_x+stepX, start_y+stepY, start_z;start_x+stepX, 
start_y, start_z ];                     
 
 
        A = pt_y(j).pt_x(i).z_0; % calculating pointts of surface zones for bottom surface Z = 0. 
start_x = start_x+stepX; 
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end 
start_x = 0; 
start_y = start_y+stepY; 
end 
 
 
start_x = 0; 
start_y = 0; 
start_z = 0; 
 
 
%  
for k = 1:n3 
for j = 1:n2 
pt_z(k).pt_y(j).x_0 = [ start_x, start_y, start_z;start_x, start_y+stepY, start_z;start_x, start_y+stepY, start_z+stepZ;start_x, start_y, 
start_z+stepZ ];                     
 
 
 
        B = pt_z(k).pt_y(j).x_0; % calculating pointts of surface zones for left surface 
start_y = start_y+stepY; 
 
end 
start_y = 0; 
start_z = start_z+stepZ; 
end 
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% Following procedure uptosheetnum 1 was used to open an excel file to 
% record the values 
 
 
currentfile = mfilename('fullpath'); 
 [pathstr,name,ext] = fileparts(currentfile); 
 S = fullfile(pathstr,'surface2surface.xls') 
addpath(pathstr) 
file = S; 
 Excel = actxserver('Excel.Application'); 
 Workbooks = Excel.Workbooks; 
Excel.Visible=1; 
 Workbook=Workbooks.Open(file) 
sheetnum=8; 
 
 
%  
for j = 1:n2 
 
for i = 1:n1 
x0 = pt_y(j).pt_x(i).z_0(1,1); 
x1 = pt_y(j).pt_x(i).z_0(3,1); 
        y0 = pt_y(j).pt_x(i).z_0(1,2); 
        y1 = pt_y(j).pt_x(i).z_0(2,2); 
        z0 = pt_y(j).pt_x(i).z_0(1,3); 
        z1 = pt_y(j).pt_x(i).z_0(3,3);  
 
       A=  [x0 x1, y0 y1]; 
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for k = 1:n3 
for l = 1:n2 
 
            ep0= pt_z(k).pt_y(l).x_0(1,2); 
            ep1= pt_z(k).pt_y(l).x_0(2,2); 
            ne0= pt_z(k).pt_y(l).x_0(1,3); 
            ne1= pt_z(k).pt_y(l).x_0(3,3); 
            th0= pt_z(k).pt_y(l).x_0(1,1); 
            th1= pt_z(k).pt_y(l).x_0(3,1); 
 
          B=   [ep0 ep1, ne0 ne1]; 
 
           [Coordinate, Area_Factor] = f(x0,x1,y0,y1,z0,z1,ep0,ep1,ne0,ne1,th0,th1,stepX,stepY,stepZ,kT) 
 
%  Recording the direct exchange area values that has been obtained 
 
 
count = count+1;   
          rn1   = 12+count;  
          rn2   = 12+count; 
          range1 = sprintf('B%d:M%d',rn1,rn1); 
          range2 = sprintf('O%d:O%d',rn2,rn2); 
          Sheets = Excel.ActiveWorkBook.Sheets; 
          sheet1 = get(Sheets, 'Item', sheetnum); 
invoke(sheet1, 'Activate'); 
Activesheet = Excel.Activesheet; 
ActivesheetRange = get(Activesheet,'Range',range1); 
set(ActivesheetRange, 'Value', Coordinate); 
          Range = get(Activesheet,'Range',range1); 
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out = Range.value;  
ActivesheetRange = get(Activesheet,'Range',range2); 
set(ActivesheetRange, 'Value',  Area_Factor); 
          Range = get(Activesheet,'Range',range2); 
out = Range.value; 
 
 
end 
 
end 
 
 
end 
 
end 
 
% Saving the opened work book  
 
invoke(Workbook,'Save') 
invoke(Excel,'Quit'); 
delete(Excel); 
clearExcel; 
 
 
 
 
function [Coordinate, Area_Factor] = f(x0,x1,y0,y1,z0,z1,ep0,ep1,ne0,ne1,th0,th1,stepX,stepY,stepZ,kT) 
 
symsxyz 
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% Lower Limits 
xi1 = x0; xj1 = th0 ; 
yi1 = y0; yj1 = ep0 ; 
zi1 = z0; zj1 = ne0 ; 
dxi = stepX; dxj = 0 ; 
dyi = stepY; dyj = stepY ; 
dzi = 0; dzj = stepZ ; 
 
 F = @(x,y,z)(((stepY+y).*exp(sqrt((xi1+x).^2+(yi1-yj1+y).^2+(zj1+z).^2).*(-kT)).*(xi1+x).*(zj1+z))./((((xi1+x).^2+(yi1-
yj1+y).^2+(zj1+z).^2).^2).*pi)); 
 
 G = @(x,y,z)(((stepY-y).*exp(sqrt((xi1+x).^2+(yi1-yj1+y).^2+(zj1+z).^2).*(-kT)).*(xi1+x).*(zj1+z))./((((xi1+x).^2+(yi1-
yj1+y).^2+(zj1+z).^2).^2).*pi)); 
 
 Q = triplequad(F,0,dxi,-dyi,0,0,dzj); 
 R = triplequad(G,0,dxi,0,dyj,0,dzj); 
Coordinate = [x0 x1 y0 y1 z0 z1 th0 th1 ep0 ep1 ne0 ne1]; 
Area_Factor = Q+R; 
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Appendix3: Sample program which uses Simpson’s rule to perform numerical integration 

 

% function [Coordinate, Area_Factor] = f(x0,x1,y0,y1,z0,z1,ep0,ep1,ne0,ne1,th0,th1,stepX,stepY,stepZ,kT) 
%      
%  n=8; 
%  
%  
% i=0; 
% j=0; 
% k=0; 
% l=0; 
%  
%  
%  
%  
% syms x y z 
%  
% xi1 = x0; xj1 = th0 ; 
% yi1 = y0; yj1 = ep0 ; 
% zi1 = z0; zj1 = ne0 ; 
% dxi = stepX; dxj = 0 ; 
% dyi = stepY; dyj = stepY ; 
% dzi = 0; dzj = stepZ ; 
%  
%   
% Base_Function_1 = (stepY+y)*exp(sqrt((xi1+x)^2+(yj1-yi1+y)^2+(zj1+z)^2)*(-kT))*(xi1+x)*(zj1+z)/((((xi1+x)^2+(yi1-
yj1+y)^2+(zj1+z)^2)^2)*pi); 
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% Base_Function_2 = (stepY-y)*exp(sqrt((xi1+x)^2+(yj1-yi1+y)^2+(zj1+z)^2)*(-kT))*(xi1+x)*(zj1+z)/((((xi1+x)^2+(yi1-
yj1+y)^2+(zj1+z)^2)^2)*pi); 
%  
% for j = 0:(dzj)/n:dzj 
%         r = r+1; 
%         Z(r) = j; 
%         z = Z(r); 
%         Base1F1(r) = eval(Base_Function_1); 
%         Base1F2(r) = eval(Base_Function_2); 
%          
%     end 
%      
%      First_Int_1 = (dzj)*(Base1F1(1)+ 4*Base1F1(2)+ 2*Base1F1(3) + 4*Base1F1(4)+ 2*Base1F1(5)+ 4*Base1F1(6)+ 
2*Base1F1(7)+ 4*Base1F1(8)+Base1F1(9))/(3*n); 
%      First_Int_2 = (dzj)*(Base1F2(1)+ 4*Base1F2(2)+ 2*Base1F2(3) + 4*Base1F2(4)+ 2*Base1F2(5)+ 4*Base1F2(6)+ 
2*Base1F2(7)+ 4*Base1F2(8)+Base1F2(9))/(3*n); 
%      
%       
%      for i = -dyi:(dyi)/n:0 
%         s = s+1; 
%         Yi(s) = i; 
%         y = Yi(s); 
%         Base2F1(s) = eval(First_Int_1); 
%      end 
%     
%     Second_Int_1 = (dyi)*(Base2F1(1)+ 4*Base2F1(2) + 2*Base2F1(3) + 4*Base2F1(4)+ 2*Base2F1(5)+ 4*Base2F1(6)+ 
2*Base2F1(7)+ 4*Base2F1(8)+Base2F1(9))/(3*n); 
%      
%       
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%      for k = 0:(dyj)/n:dyj 
%         q = q+1; 
%         Yk(q) = k; 
%         y = Yk(q); 
%         Base2F2(q) = eval(First_Int_2); 
%          
%      end 
%  
%      Second_Int_2 = (dyj)*(Base2F2(1)+ 4*Base2F2(2) + 2*Base2F2(3) + 4*Base2F2(4)+ 2*Base2F2(5)+ 4*Base2F2(6)+ 
2*Base2F2(7)+ 4*Base2F2(8)+Base2F2(9))/(3*n); 
%      
%  
%  
%     for l = 0:(dxi)/n:dxi 
%         p = p+1; 
%         Xi(p) = l; 
%         x = Xi(p); 
%         Base3F1(p) = eval(Second_Int_1); 
%         Base3F2(p) = eval(Second_Int_2); 
%     end 
%       
%      Third_Int_1 = (dxi)*(Base3F1(1)+ 4*Base3F1(2) + 2*Base3F1(3) + 4*Base3F1(4)+ 2*Base3F1(5)+ 4*Base3F1(6)+ 
2*Base3F1(7)+ 4*Base3F1(8)+Base3F1(9))/(3*n); 
%      Third_Int_2 = (dxi)*(Base3F2(1)+ 4*Base3F2(2) + 2*Base3F2(3) + 4*Base3F2(4)+ 2*Base3F2(5)+ 4*Base3F2(6)+ 
2*Base3F2(7)+ 4*Base3F2(8)+Base3F2(9))/(3*n); 
 
 
%       Coordinate = [x0 x1 y0 y1 z0 z1 th0 th1 ep0 ep1 ne0 ne1]; 
%      Area_Factor = Third_Int_1+Third_Int_2; 
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Appendix 4: Sample DEA calculation for bottom to top surface 

 

X0 X1 Y0 Y1 EP0 EP1 NE0 NE1 V.F From 
other ways 

V.F from 
software 

calculation 

Error % 

0 1 0 1 0 1 0 1 0.0686 0.0686 0.00 
0 1 0 1 1 2 0 1 0.0481 0.0481 0.00 
0 1 0 1 0 1 1 2 0.0481 0.0481 0.00 
0 1 0 1 1 2 1 2 0.0351 0.0351 0.00 
1 2 0 1 0 1 0 1 0.0481 0.0481 0.00 
1 2 0 1 1 2 0 1 0.0686 0.0686 0.00 
1 2 0 1 0 1 1 2 0.0351 0.0351 0.00 
1 2 0 1 1 2 1 2 0.0481 0.0481 0.00 
0 1 1 2 0 1 0 1 0.0481 0.0481 0.00 
0 1 1 2 1 2 0 1 0.0351 0.0351 0.00 
0 1 1 2 0 1 1 2 0.0686 0.0686 0.00 
0 1 1 2 1 2 1 2 0.0481 0.0481 0.00 
1 2 1 2 0 1 0 1 0.0351 0.0351 0.00 
1 2 1 2 1 2 0 1 0.0481 0.0481 0.00 
1 2 1 2 0 1 1 2 0.0481 0.0481 0.00 
1 2 1 2 1 2 1 2 0.0686 0.0686 0.00 
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Appendix 5: Graphical representation of view factor for simple geometries 
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Source :[16] 
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