

OPTIMIZATION OF RECEIVER FIFO FOR IEEE

802.3ba 40GBASE PCS SUBLAYER

Anuradha Nirmala Nanayakkara

(118411J)

Degree of Master of Science

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

June 2015

OPTIMIZATION OF RECEIVER FIFO FOR IEEE

802.3ba 40GBASE PCS SUBLAYER

Anuradha Nirmala Nanayakkara

(118411J)

Dissertation submitted in partial fulfillment of the requirements for the degree

Master of Science in Electronics and Automation

Department of Electronic and Telecommunication Engineering

University of Moratuwa

Sri Lanka

June 2015

i

Declaration of the Candidate and the Supervisor

I declare that this is my own work and this dissertation does not incorporate without

acknowledgement any material previously submitted for a Degree or Diploma in any

other University or institute of higher learning and to the best of my knowledge and

belief it does not contain any material previously published or written by another

person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce

and distribute my dissertation, in whole or in part in print, electronic or other

medium. I retain the right to use this content in whole or part in future works (such as

articles or books).

Signature: Date:

The above candidate has carried out research for the Master’s dissertation under my

supervision.

Signature of the supervisor: Date:

ii

Abstract

Keywords: FIFO, IEEE802.3, PCS Sub layer, 40GBASE-R, 10GBASE-X

Local Area Networks (LAN) are based on Ethernet technology. Commonly used 10 and 40

Gigabit Ethernet systems are adopting IEEE 802.3 standards.
The aim of this dissertation is to optimize the FIFO design for the receiver of Physical

Coding Sub layer (PCS) specified by IEEE 802.3 standards. This dissertation is having two

phases. In the first phase, optimal FIFO for IEEE 802.3ae 10GBASE-X PCS receiver is

designed and implemented. Proper operation of the proposed design is verified with
simulation results. In the second phase, possible optimization for receiver FIFO of IEEE

802.3ba 40GBASE-R PCS layer is identified. Potential implementation for 40GBASE-R

PCS is simulated with proposed FIFO design, to verify the proper functionality.
Proposed designs will save gate count, power and the silicon area of ASIC design

considerably. As future work it is suggested to emulate the proposed design with a suitable

hardware.

iii

Acknowledgements

First and foremost I would like to express my sincere thanks to my supervisor, Dr. S.

Thayaparan, Senior Lecturer, Department of Electronic and Telecommunication

Engineering, University of Moratuwa, for his continuous guidance and support

provided to me throughout this research. His encouragement to tackle difficulties

encountered and the patience with my mistakes should always be appreciated.

I also wish to acknowledge Prof. S.R. Munasinghe, Senior Lecturer, Department of

Electronic and Telecommunication Engineering, University of Moratuwa, for the

guidance provided at different stages of the research.

My parents, brother and sister too should be remembered for their continuous support

and encouragement. Finally I feel I should dedicate a single sentence for my little kid

Poo, (who is just turning two) for bearing up her amma frowning in front of the

laptop prolonged hours, in spite of the fact that she is missing the care and attention

of her farther as well.

This piece of work is dedicated to all those, who helped me in numerous ways to

make this is a success.

iv

TABLE OF CONTENTS

Declaration of the Candidate and the Supervisor i

Abstract ii

Acknowledgements iii

Table of Contents iv

List of Figures vii

List of Tables viii

List of Abbreviations ix

1. Introduction 1

1.1 Introduction 1

1.2 Problem Statement 1

1.3 The Aims and Objectives of the Research 2

1.4 Research Methodology 2

1.5 Resource Requirements 3

1.6 Scope of the Project 3

2. Analysis 4

2.1 10GBASE-X Systems 4

2.1.1 8B/10B encoding 5

2.1.2 Special code groups [5] 8

2.1.3 Lane alignment 8

2.1.4 Clock rate compensation 9

2.1.5 Optimal receiver FIFO parameters for 10GBASE-X PCS sub layer [11]

 10

2.2 40GBASE-R Systems 11

2.2.1 Idle Control Character /I/ 13

2.2.2 Lane Alignment Consideration 14

2.2.3 Clock rate compensation in worst case scenario 15

v

2.2.4 Optimization of receiver FIFO parameters for 40GBASE-R PCS sub

layer 17

3. Modeling PCS Sub layer of 40GBASE-R systems 18

3.1 40GBASE-R PCS Sub Layer Modeling 18

3.2 40GBASE-R PCS Sub Layer Transmitter 18

3.2.1 64B/66B Encoder [13] 19

3.2.2 Scrambler [5: Clause 82.2.5, 14] 20

3.2.3 Block distribution [5: Clause 82.2.6] 20

3.2.4 Alignment marker insertion [5: Clause 82.2.7] 21

3.2.5 Serializer 23

3.3 40GBASE-R PCS Sub Layer Receiver 23

3.3.1 Deserializer 23

3.3.2 Block synchronization [5: Clause 82.2.11] 23

3.3.3 Alignment marker lock [5: Clause 82.2.12] 23

3.3.4 Lane deskew FIFO 24

3.3.5 Lane reorder [5: Clause 82.2.13] 25

3.3.6 Alignment marker removal [5: Clause 82.2.14] 25

3.3.7 Clock rate compensation FIFO 25

3.3.8 Descrambler [5: Clause 82.2.15] 25

3.3.9 Decoder [15] 26

4. Simulation, Results and Achievements 27

4.1 Simulation Environment 27

4.2 10GBASE-X Simulation and Results 27

4.2.1 Waveforms captured for FIFO Full viable situation 27

4.2.2 Waveforms captured for FIFO Empty viable situation 28

4.3 40GBASE-R Simulation and Results 29

vi

4.3.1 FIFO Full viable situation 29

4.3.2 FIFO Empty viable situation 29

4.4 Publication List 31

5. Conclusions and Future Works 32

5.1 Discussion and Conclusions 32

5.1.1 For 10 GBASE-X 32

5.1.2 For 40 GBASE-R 32

5.2 Recommendation for Future Work 33

Reference List 34

Appendix A: Verilog test bench for 10GBASE-X PCS Sublayer FIFO design 37

Appendix B: Verilog testbench for 40GBASE-R PCS sub layer Model 40

vii

LIST OF FIGURES

 Page

Figure 2.1: Positioning of XGXS and PCS Sub layers in IEEE 802.3 10G Model 5

Figure 2.2: Functional block diagram of the 10GBASE-X physical layer 6

Figure 2.3: XGMII character stream to PCS code group mapping example 7

Figure 2.4: Positioning of 40G Ethernet 11

Figure 2.5: Functional block diagram 40GBASE-R physical layer 12

Figure 2.6: 64B/66B block formats 13

Figure 2.7: Formation of maximum data packet 16

Figure 3.1: 40GBASE-R Transmitter Model 19

Figure 3.2: Encoder Output 20

Figure 3.3: Scarambler 20

Figure 3.4: PCS Block Distribution 21

Figure 3.5: Alignment marker format 22

Figure 3.6: Alignment Marker Insertion 22

Figure 3.7: Alignment Marker insertion period 22

Figure 3.8: 40GBASE-R Receiver Model 24

Figure 3.9: Descrambler 26

Figure 3.10: Decoder Output 26

Figure 4.1: Signals captured from ModelSim Wave simulation in a FIFO Full

condition viable scenario for 10GBASE-X 28

Figure 4.2: Signals captured from ModelSim Wave simulation in a FIFO Empty

condition viable scenario for 10 GBASE-X 28

Figure 4.3: Signals captured from ModelSim Wave simulation in a FIFO Full

condition viable scenario for 40GBASE-R 29

Figure 4.4: Signals captured from ModelSim Wave simulation in a FIFO Empty

condition viable scenario for 40GBASE-R 30

viii

LIST OF TABLES

 Page

Table 2.1: XGMII characters to PCS code-group mapping 6

Table 2.2: PCS code-group to XGMII character mapping 7

Table 2.3: Skew Budget for 10GBASE-X 9

Table 2.4: Control codes 14

Table 2.5: Maximum skew for PCS 14

ix

LIST OF ABBREVIATIONS

Abbreviation Description

ASIC Application Specific Integrated Circuit

BIP Bit Interleave Parity

CSMA/CD Carrier Sense Multiple Access with Collision

Detection

DTE Data Terminal Equipment

FCS Frame Check Sequence

FIFO First In First Out

HDL Hardware Description Language

IP Internet Protocol

IPG Inter Packet Gap

LAN Local Area Network

MAC Media Access Control

OSI Open System Interconnection

PCS Physical Coding Sub layer

PHY PHysical Layer

PMA Physical Medium Attachment

RS Reconciliation Sub layer

RXC Receive Control signals

TXC Transmit Control signals

UI Unit Interval

XAUI 10 Gigabit Attachment Unit Interface

XGMII 10 Gigabit Media Independent Interface

XGXS Extender Sub layer

XLGMII 40Gb/s Media Independent Interface

1

1. INTRODUCTION

Chapter 1, Introduction is organized into five subsections. Section 1.1 provides

introduction to the research. Problem statement is defined in section 1.2. Section

1.3 gives the objective of the research work. Research Methodology, section 1.4

describes the how the research had been conducted. Resource requirements for the

project and the scope of project are coming under section 1.5 and 1.6 respectively.

1.1 Introduction

Nowadays consumer Internet Protocol (IP) traffic demand is bolstering. High

definition video, high speed broadband access, growth of network aggregation

applications, growing number of server and computer applications with significant

bandwidth need, are some contributors for the huge data traffic demands. Ethernet is

the ubiquitous connectivity technology for Local Area Networks (LAN) due to its

low cost, known reliability and simplicity. Rising volume of IP traffic demands for

high speed LAN interfaces, 10 gigabits per second (Gbps) or even something beyond

that. Commonly used 10 Gigabit and 40 Gigabit Ethernet systems are adopting IEEE

802.3 standards [1]-[10]. IEEE802.3ae for 10Gbps and IEEE802.3ba supporting

40Gbps data transfer rate were standardized in order to drive this rapid growth in IP

data traffic.

1.2 Problem Statement

A family of 10 Gb/s physical layer implementations, consists of 10GBASE-CX4 [5:

Clause 54] and10GBASE-LX4 [5: Clause 53] is referred as 10GBASE-X. These are

based upon 8B/10B data coding method. As defined by the IEEE802.3 standards,

these designs are having independent four serial lanes at their, receive and transmit

data paths [5: Clause 48] of the PCS and XGXS sub layer.

The 40GBASE-R refers to a family of Physical Layer implementations based upon

64B/66B data coding method. The 40GBASE-R Physical Coding Sub layer (PCS)

performs encoding (decoding) of data from (to) the 40Gb/s Media Independent

Interface (XLGMII) to 64B/66B code blocks, distribute data to multiple lanes, and

2

transfer the encoded data to the PMA. 40GBASE-R PCS is using four encoded bit

streams to communicate with PMA.

Hence in both scenarios lane synchronization has to be carried out at the receiver

side of the PCS. Therefore at the receiver, one FIFO is required by each lane to store

the data received. Since there are four serial lanes, a bank of four FIFOs has to be

employed at the PCS receiver of each physical layer implementation.

In order to implement the FIFO banks at the PCS layer of the receiver either RAM or

register arrays are used. Both RAM and the register arrays are power hunting and in

order to accommodate them considerable area has to be allocated in the ASIC design.

Therefore an optimal FIFO design for IEEE802.3ae 10G PCS sub layer receiver as

well as optimization for IEEE802.3ba 40G PCS layer receiver FIFO, can save a

significant amount of power and silicon area.

1.3 The Aims and Objectives of the Research

The aim of this research project is to study and analyze IEEE 802.3 standard

specifications, clause 48 and clause 82 of [5] respectively for 10G and 40G Ethernet.

With the analysis possible optimization for receiver FIFO parameters are identified.

Proposed FIFO designs are simulated and desired signals are monitored to verify the

proper functionality. Analysis in the 10G is applicable for both 10GBASE-CX4 and

10GBASE-LX4 systems. Also the particular FIFO design proposed is applicable for

all 40GBASE-R systems.

1.4 Research Methodology

The research methodology adhered is as follows. Relevant standard clauses from [5]

were studied, and data transmission was analyzed in order to identify optimization

for PCS sub layer receiver FIFO designs. Proposed designs are modeled and

implemented in a simulation environment. The functionalities of proposed designs

are verified using simulation results.

3

1.5 Resource Requirements

PCS layer for the 10G is specified in clause 48 of section 4 of [5]. Clause 82 of

section 6 of [5] specifies PCS layer for 40G. The proposed designs are simulated

using ModelSim Simulation software [22]. Verilog, Hardware Description Language

[23] (HDL) is used to model the systems. The contribution of the proposed design for

the ASICs is quantified considering the general values being used in the industry.

1.6 Scope of the Project

This research project is in the scope of Ethernet for LAN based on IEEE802.3

standard. It introduces optimization for PCS receiver FIFO of 10G and 40G Ethernet

systems.

4

2. ANALYSIS

Chapter 2 Analysis is divided in to two parts. This includes analysis of IEEE802.3

clause 48 for 10GBASE-X systems followed by analysis of IEEE802.3 clause 82

for 40GBASE-R systems. Under each type of systems first the functional block

diagram is investigated. After that there is an independent flow of subsections

dedicated to following discussions. Subsection 1 type of encoding used, subsection

2 special code groups. Determination of FIFO depth based on lane alignment and

cock rate compensation comes under subsections 3 and 4. As the last subsection

proposed optimization for FIFO parameters will be discussed for each case.

2.1 10GBASE-X Systems

Figure 2.1 taken from [5] shows the positioning of different sub layers of IEEE802.3

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) LAN model

and their relationship to Open System Interconnection (OSI) reference model.

The purpose of the XGMII (10 Gigabit Media Independent Interface) is to provide a

simple, inexpensive, and easy-to-implement interconnection between the MAC

(Media Access Control) sub layer and the Physical Layer (PHY). XAUI (10 Gigabit

Attachment Unit Interface) is an optional layer, used to extend the operational

distance of the XGMII. XGMII Extender sub layer (XGXS), is comprised of two

XGXS layers: one at the RS (Reconciliation Sub layer) end (DTE XGXS), and other

XGXS at the PHY end (PHY XGXS) and a XAUI between them. The purpose of the

XGMII Extender is to extend the operational distance of the XGMII and to reduce

the number of interface signals.

The transmitter and the receiver functional block diagram for the 10GBASE-X PCS

layer is shown in, Figure 2.2.

5

Figure 2.1: Positioning of XGXS and PCS Sub layers in IEEE 802.3 10G Model

Source: Clause 47 [5]

2.1.1 8B/10B encoding

The 10GBASE-X systems are using 8B/10B encoding and 10B/8B decoding

algorithms [5: Clause 48.2.3]. The PCS maps 8 bit XGMII characters into 10-bit

code-groups, and vice versa, using the 8B/10B block coding scheme. The mapping of

XGMII characters to PCS code-groups is specified in Table 2.1.

6

Figure 2.2: Functional block diagram of the 10GBASE-X physical layer

Source: Clause 48.1.6 [5]

 Table 2.1: XGMII characters to PCS code-group mapping

XGMII

TXC

XGMII

TXD

PCS code-group Description

0 00 through FF Dxx.y Normal data transmission

1 06 K28.0 or K28.3 or K28.5 or

D20.5

Assert LPI

1 07 K28.0 or K28.3 or K28.5 Idle in ||I||

1 07 K28.5 Idle in ||T||

1 9C K28.4 Sequence

1 FB K27.7 Start

1 FD K29.7 Terminate

1 FE K30.7 Error

 Source: Clause 48.2.3 [5]

7

The mapping of PCS code-groups to XGMII characters is specified in Table 2.2.

 Table 2.2: PCS code-group to XGMII character mapping

XGMII

RXC

XGMII RXD PCS code-group Description

0 00 through FF Dxx.y Normal data transmission

1 06 K28.0 or K28.3 or K28.5

or D20.5a

Assert LPI

1 07 K28.5 Idle in ||I||

1 9C K28.4 Sequence

1 FB K27.7 start

1 FD K29.7 Terminate

1 FE K30.7 Error

 Source: clause 48.2.3

Figure 2.3: XGMII character stream to PCS code group mapping example

Source: Clause 48.2.3 [5]

Hence at the PCS transmitter an 8 bit XGMII character is mapped into 10 bit PCS

code group. In order to accommodate this 8B to 10B encoded data, the width of the

receiver FIFO at the PCS sub layer should be 10 bits. Further data received on data

path consist of four independent serial lanes, and these data should be stored

8

independently at the receiver. So at the receiver, there should be a bank of four

FIFOs, one per each lane. The recovered clock from the serial lane data is used to

store the received data in the FIFOs. It means the FIFO write pointer is controlled by

the recovered clock. The local clock is used to read the stored data and hence

controlling the FIFO read pointer.

2.1.2 Special code groups [5]

Idle ordered sets (||I||) are transmitted in all four serial lanes continuously and

repetitively whenever the XGMII is idle. This is denoted as TXD

<31:0>=0x07070707 and TXC <3:0>=0xF. ||I|| provides a continuous fill pattern to

establish and maintain lane synchronization, perform lane-to-lane deskew and

perform PHY clock rate compensation.

A sequence of ||I|| ordered sets consists of one or more consecutively transmitted

||K||, ||R|| or ||A|| ordered sets. The purpose of randomizing the ||I|| sequence is to

reduce 10GBASE-X electromagnetic interference (EMI) during idle state.

The idle character ||I|| on the XGMII side is converted into ||A||, ||K|| and ||R||

characters within the transmitters of the PCS and XGXS sub layers. The ||A||, ||K||

and ||R|| characters are respectively used for the lane alignment, code group

alignment and clock rate compensation purposes at the receiver side of the PCS and

XGXS sub layers. Similarly, ||A||, ||K|| and ||R|| characters received by the receiver of

the PCS and XGXS sub layer are converted into idle character ||I|| within the receiver

of the PCS and XGXS sub layers.

The depth of the receiver FIFO is determined based on two factors. One is the lane

alignment at the receiver side. The other is the clock rate compensation in the worst

case scenario at the receiver.

2.1.3 Lane alignment

Skew is introduced between lanes by both active and passive elements of a

10GBASE-X link. Allowable skew for all link elements are specified in the

budget. The skew budget shown in

 Table 2.3 is given at the IEEE Std 802.3 Clause 48.2.4.2.2 [5].

9

 Table 2.3: Skew Budget for 10GBASE-X

Skew

Source

Occurrences Skew Total

Skew

PMA Tx 1 1 UI 1 UI

PCB 2 1 UI 2 UI

Medium 1 < 18 UI < 18 UI

PMA Rx 1 20 UI 20 UI

Total < 41 UI

 Source: Clause 48.2.4.2.2 [5]

Unit Interval (UI) is the period of time allocated for the transmission of one symbol

on one channel. Clock rate of 312.5 MHz implies 3200 ps for one code group, which

is a transfer of 10 bits. Therefore 320 ps would be the time interval for one bit

transfer.

As per the budget, the maximum possible skew is 40 bits in serial lanes. Since 10 bits

are stored in a single location at the receiver side, 10 bits represent one write pointer.

It means the ||A|| code group in all four lanes can be misaligned by maximum of four

write pointers at the FIFO. Therefore the FIFO depth required by the lane alignment

is 5.

2.1.4 Clock rate compensation

The worst case scenario is when the data packets have their maximum size and back

to back with minimum Inter Packet Gap (IPG). In addition, the maximum clock rate

difference between the read and write pointers has to be considered. The read and

write pointer difference should be in its maximum of ±100 PPM at the worst case

operating condition [5: Clause 48.1.4], [12]. It means the read pointer clock can be

+100PPM and the write pointer can be at -100PPM or vice versa. In both cases, the

difference between read and write pointers is 200PPM in its worst scenario. It can be

translated into one read-write pointer difference out of 5000 clock cycles.

Next, we consider the worst case operation in terms of data packet size with

minimum IPG. Even though the IEEE std. is limiting the max frame size to 1518

bytes [5: Clause 4.4.2], some applications may use jumbo data packets which may

10

consist up to 9 Kbytes of data [17] – [19]. For this analysis we consider the

maximum jumbo data packet size of 10 Kbytes. In order to transfer 10 Kbytes of data

packet by four lanes, we need 2500 clock cycles. It means every 2500 cycles, we

have an opportunity to insert or delete one ||R|| code group in the IPG to compensate

the clock rate difference.

Since one read-write pointer difference can occur only after 5000 clock cycles at

±100PPM, there will be at least two IPGs before one read-write pointer difference

occurs. One pointer location is required for the cross-domain synchronization of the

FIFO control signals. Therefore it can be concluded that the minimum of two FIFO

locations are sufficient between the add request of the ||R|| code group in IPG and the

FIFO empty condition. Similarly the minimum of two FIFO locations are sufficient

between the delete request of the ||R|| code group in IPG and the FIFO overflow

condition.

2.1.5 Optimal receiver FIFO parameters for 10GBASE-X PCS sub layer [11]

A FIFO bank consists of four FIFOs with the width of 10 bits is required by the

design. The FIFO depth of 8 is sufficient to handle the ±100 PPM clock rate

difference. The FIFO read and write pointers have to be operated in a round-robin

method. If the FIFO depth is selected to be 8, the following 2 rules are applied:

1. When the read-write pointer difference is lesser than three, the insert request

should be raised to add a ||R|| code group. The FIFO empty condition is when

the current pointer difference becomes zero and previous pointer difference is

one.

2. When the read-write pointer difference is greater than five, the delete request

should be raised to remove one ||R|| code group. When the previous pointer

difference is seven and current pointer difference becomes zero, the FIFO

overflow condition is met.

The FIFO is on a free run when the read write pointer difference is between three

and five. The initial setting for read pointer can be at four. It means the system

can start reading the data from the FIFO bank after writing four locations.

11

2.2 40GBASE-R Systems

Figure 2.4: Positioning of 40G Ethernet

Source: Clause 80.1.3 [5]

Figure 2.4 shows the positioning of different sub layers of 40GBASE-R. The

40GBASE-R refers to a family of Physical Layer implementations based upon

64B/66B data coding method. The 40GBASE-R PCS performs encoding (decoding)

of data from (to) the 40Gb/s Media Independent Interface (XLGMII) to 64B/66B

code blocks, distribution of data to multiple lanes and transmission the encoded data

to the PMA. 40GBASE-R PCS is using four encoded bit streams to communicate

with PMA [5]. Therefore lane synchronization has to be carried out at the receiver

side and at the receiver, one FIFO is required by each lane to store data received.

Hence a bank of four FIFOs needs to be employed at PCS of the receiver. XLGMII

sub layer is the corresponding counterpart of XGMII for 10GBASE-X [15].

Functional block diagram of 40GBASE-R PCS is shown in Error! Reference

source not found.. PCS uses eight octet wide data path (RXD <63:0>, TXD<63:0>)

12

and TXC<7:0>, RXC<7:0> signals to communicate with XLGMII side. When

communicates with PMA, PCS uses four encoded serial bit streams.

Figure 2.5: Functional block diagram 40GBASE-R physical layer

Source: Clause 82.1.5 [5]

13

 Figure 2.6: 64B/66B block formats

 Source: Clause 82.2.3.3 [5]

2.2.1 Idle Control Character /I/

Idle control characters (/I/) are transmitted when idle control characters are received

from the XLGMII. Idle control characters may be added or deleted by the PCS to

adapt between clock rates. In order to support deskew and reordering of individual

PCS lanes at the receive PCS, alignment markers are added periodically to each PCS

lane. The transmit process must delete idle control characters or sequence ordered

sets to accommodate the transmission of alignment markers. The PCS receive

process insert /I/ characters in order to accommodate any rate differences due to the

removal of alignment markers.

14

Table 2.4: Control codes

Source: Cause 82.2.3.4 [5]

Here Also, the depth of the FIFO is decided based on two factors; Lane alignment at

the receiver side and the clock rate compensation at the receiver in the worst case

scenario.

2.2.2 Lane Alignment Consideration

Data distribution over multiple lanes, four in the case of 40GBASE-R, is supported

in the Physical layer. Data from multiple lanes need to be aligned at the receiver.

Periodic insertion of an alignment marker allows the lane alignment at the receiver.

Table 2.5: Maximum skew for PCS

PCS Maximum Skew Maximum Skew variation

40GBASE-R 180 ns (~1856 bits) 4 ns (~41 bits)

100GBASE-R 180 ns (~928 bits) 4 ns (~21 bits)

 Source: Clause 82.2.12 [5]

Error! Reference source not found. showing the skew requirements for 40GBASE-

R PCS is taken from IEEE Std 802.3 Section 6, clause 82.2.12 [5]. According to

Table 2.5 maximum possible skew at PCS receive is 180 ns and the maximum skew

variation [16] at PCS receive is 4 ns. Hence the maximum skew at PCS receive is

15

expected to be a value lying in the range of 176 ns to 184 ns. For the design

optimization purpose we can consider the maximum possible skew at the PCS

receive to be 184 ns.

For PMA sub layers supporting 40GBASE-R interfaces, the number of PCSLs z is 4,

and the nominal signaling rate R of each PCSL is 10.3125 GBd. [5: Clause 83.5.2].

Signaling rate of 10.3125 GBd results in a Unit Interval (UI) time of,

1

10.3125
= 96.9697 𝑝𝑠 (1)

Therefore 184 ns corresponds to,

184 𝑛𝑠

96.9697 𝑝𝑠
= 1897.49 𝑈𝐼 (2)

In the PCS sub layer 64B/66B encoding is used so 66 bits are stored in a single FIFO

location. Therefore in order to accommodate 1897.49 UIs,

1897.49

66
= 28.7498 = 29 locations (3)

29 FIFO locations are required. This means alignment markers at the four serial lanes

can be misaligned by a maximum of 29 FIFO locations/ FIFO write pointers.

Therefore the minimum FIFO depth required by the lane alignment is 29. Hence we

can implement a bank of four FIFOs one per each lane, with a depth of 32 locations.

2.2.3 Clock rate compensation in worst case scenario

The worst case scenario is met when the data packets have their maximum size and

back to back with minimum IPG. In addition to that, the maximum clock rate

difference between the read and write pointers has to be considered. Maximum signal

rate, per lane for 40GBASE-R is 10.3125 ±100 PPM [5: Clause 85.8.4], [12]. That is

the read - write pointer difference should be in its maximum of ±100 PPM at the

worst case operating condition. It means the read pointer clock can be +100PPM and

the write pointer can be at -100PPM or vice versa. In both cases, the difference

between read and write pointers is 200PPM in its worst scenario. 200 PPM implies

16

200 pointer differences per 1000 000 clocks. Therefore one read write clock

difference is anticipated for 5000 clock cycles. In order to compensate for this

potential single clock difference, there should be at least one IPG for every 5000

clock cycles.

Therefore maximum data packet may span across 5000 clock cycles. Each data

packet starts with eight bit start character. Data packet will be terminated with

terminator character and idle characters will follow. Hence the maximum amount of

effective data that can be supported, while conforming the requirements of maximum

clock rate difference is 39.994 Kbytes (Figure 2.7Figure 2.1).

Figure 2.7: Formation of maximum data packet

Idle control characters may be added / deleted by PCS to adapt between clock rates.

/I/ insertion / deletion shall occur in groups of eight [5: Clause 82.2.3.6]. As per the

specification minimum IPG is 96 bits or 12 octets [5: Clause 4.4.2]. Minimum IPG

guarantee full column of /I/ characters for only one lane per IPG. Therefore clock

rate compensation needed to be carried out at the upper level of the receiver, after all

the lanes are aggregated.

For the clock rate compensation purposes a separate FIFO will be implemented at the

upper level of the receiver model. The width of this FIFO should be 66 bit in order to

accommodate 64B/66B encoded data. One pointer location is required for the cross-

domain synchronization of the FIFO control signals. Therefore it can be concluded

that the minimum of two FIFO locations are sufficient between the add request of the

Idle /I/ code group in IPG and the FIFO empty condition. Similarly the minimum of

two FIFO locations are sufficient between the delete request of the /I/ code group in

IPG and the FIFO overflow condition. For uninterrupted free running of data we are

proposing a FIFO depth of eight locations.

Clk1: S0 D1 D2 D3 D4 D5 D6 D7

Clk2- Clk4999:8 data bytes on each

Clk5000-D0 D1 D2 T3 I4 I5 I6 I7

7 + (8 * 4998) + 3 = 39.994 Kbytes

17

2.2.4 Optimization of receiver FIFO parameters for 40GBASE-R PCS sub

layer

Potential optimization for the 40GBASE-R PCS sub layer receiver FIFO can be

summarized as follows. The proposed FIFO scheme consists of FIFOs at two levels

of the receiver model. A FIFO bank consists of four FIFOs with the width of 66 bits

is required by the design for deskew at each lane. The FIFO depth of 32 is sufficient

to handle lane misalignment introduced by skew parameters. A separate FIFO

employed at the upper level of the receiver model is used for clock rate

compensation. Here again width of 66 is needed to accommodate 64B/66B encoded

data. Depth of eight locations is sufficient to handle ±100 PPM clock rate difference.

In both cases received data will be stored in to the FIFO using the recovered clock

from the serial lane; that is the write pointer is controlled by the recovered clock.

Local system clock at the receiver is used to read stored data, hence to control the

read pointer. The read and write pointers of the FIFO operate in round robin method.

The following two rules, same as in the case of 10G are adhered with the clock rate

compensation FIFO with depth of 8 locations.

1. The insert request to add a /I/ code group should be raised, whenever the

read-write pointer difference is lesser than three. FIFO empty condition is

met when the current pointer difference is zero and the previous pointer

difference is one.

2. The delete request to remove /I/ code group should be raised whenever the

pointer difference is exceeding five. When the previous pointer difference is

seven and the current pointer difference is zero the FIFO overflow condition

is met.

The FIFO is in free run condition when the read-write pointer difference is between

three and five.

18

3. MODELING PCS SUB LAYER OF 40GBASE-R SYSTEMS

This chapter describes the proposed implementation for 40GBASE-R PCS sub

layer. Transmitter and receiver models that have been implemented for the

simulation are detailed separately in the forthcoming sections.

3.1 40GBASE-R PCS Sub Layer Modeling

In order to verify proper functionality of the FIFO design 2.2.4 , 40GBASE-R PCS

sub layer transmitter and receiver models conforming IEEE 802.3ba specification

need to be identified and implemented. Also we have to recognize the proper

location in the receiver model in which the FIFO scheme should be inserted [15].

3.2 40GBASE-R PCS Sub Layer Transmitter

 Figure 3.1 depicts the adopted transmitter model for 40GBASE-R PCS sub layer.

The transmitter was modeled referring and conforming IEEE802.3, clause 82 [5].

PCS sub layer transmitter, transmits data received from the XLGMII interface to the

PMA sub layer (refer Figure 2.4 for the positioning of different sub layers of the 40G

systems). The communication between XLGMII and PCS during transmit process is

done using eight octet wide data path (TXD <63:0>) and by the transmit control

signals (TXC<7:0>) delimiting data octets. The other end communication with the

PMA is carried out using four encoded serial bit streams. The different blocks within

the transmitter are used to provide the packet mapping between XLGMII format and

PMA service interface format.

The transmit clock (TX_CLK) which provides timing reference for the transfer of

TXC and TXD signals should be one-sixty-fourth of the MAC transmit data rate [5:

Clause 81.3.1.1] which is 40 Gb/s for 40G [5: Clause 80.1.2].

Hence,

𝑇𝑋𝐶𝐿𝐾 =
40 𝐺

64
= 625 𝑀𝐻𝑧 (4)

19

 Figure 3.1: 40GBASE-R Transmitter Model

3.2.1 64B/66B Encoder [13]

The encoder maps one XLGMII data transfer, that is TXD<63:0> and TXC<7:0> to

one 66 bit block (Figure 3.2). The sync header field of the 66 bit block is derived

based on corresponding TXC signal. Depending on the content, remaining portion of

the 66bit block is derived based on TXD, TXC or both (

 Figure 2.6).

20

Figure 3.2: Encoder Output

Source: Clause 82.2.3.2 [5]

3.2.2 Scrambler [5: Clause 82.2.5, 14]

The pay load of the 66 bit block (bit 2: bit 65) is scrambled with a self synchronizing

scrambler. The sync header bypasses the scrambler. The scrambler polynomial is

given by,

 𝐺(𝑥) = 1 + 𝑥39 + 𝑥58 (5)

The scrambler implementation is shown in Figure 3.3.

Figure 3.3: Scarambler

Source: Clause 49.2.6 [5]

3.2.3 Block distribution [5: Clause 82.2.6]

Block distribution allows support of multiple physical lanes. 66 bit data blocks

resulted after encoding and scrambling processes are distributed on four lanes by the

21

40GBASE-R PCS. This is a round robin distribution, one block at a time from the

lowest PCS lane to the highest as depicted in Figure 3.4.

Figure 3.4: PCS Block Distribution

Source: Clause 82.2.6 [5]

In the case of 40GBASE-R systems number of lanes is four so n is equal to three. 66

bit blocks are input to the distributor at a rate of 625MHz. Therefore the resulting

serial lanes will have,

625 𝑀 4⁄ = 156.25 𝑀 (6)

156.25 MHz of 66 bit blocks at each of the serial lanes.

3.2.4 Alignment marker insertion [5: Clause 82.2.7]

Alignment marker is an especially defined 66 bit block with sync header being ‘10’

that for a control block (Figure 3.5). Since insertion process takes place after

encoding and scrambling process, at the transmitter PCS alignment markers are

neither encoded nor scrambled. The content of the alignment marker block depends

on the PCS lane number. M0, M1, M2 are defined specifically for each PCS lane.

M4, M5 and M6 are bit wise inversion of M0, M1 and M2 respectively. Method of

calculating bit interleaved parity (BIP3) filed is detailed in Clause 82.2.8 [5]. BIP7 is

the inversion of BIP3. This field is used as a fast measure of bit error ratio of a given

PCS lane.

22

Figure 3.5: Alignment marker format

Source: Clause 82.2.7 [5]

Alignment Markers are added to each PCS lane in order to support deskew and

reordering PCS lanes at the receive PCS. These are inserted to all PCS lanes at the

same time and periodically (Figure 3.6 and Figure 3.7). On each lane, after

every 16383 66 bit blocks, the lane specific alignment marker block is inserted.

 Figure 3.6: Alignment Marker Insertion

 Source: Clause 82.2.7 [5]

 Figure 3.7: Alignment Marker insertion period

 Source: Clause 82.2.7 [5]

As shown in Figure 3.1 alignment marker insertion will be carried out

independently for each PCS lane.

23

3.2.5 Serializer

Transmitter serializes the 66 bit blocks prior transmitting. Serializer is having input

of 66 bit blocks at the rate of 156.25 MHz.

156.25 𝑀 ∗ 66 = 10.3125 𝐺 (7)

Hence the serializer is outputting bits at a rate of 10.3125 GHz. Our model requires

one module of this type per each lane (Figure 3.1).

3.3 40GBASE-R PCS Sub Layer Receiver

Adopted Receiver implementation is illustrated in Figure 3.8.

Receiver PCS decodes the serial data stream received from PMA sub layer to

produce RXD and RXC signals to be transmitted to XLGMII interface.

3.3.1 Deserializer

Deserializer block group the incoming bit stream to generate 66 bit parallel data.

10.3125 GHz serialize clock will produce 66 bit blocks at a rate of 156.25 MHz As

Figure 3.8 shows one module per each lane is implemented separately.

3.3.2 Block synchronization [5: Clause 82.2.11]

Block synchronization process monitors the incoming data to identify block lock

condition. It waits for 66 valid sync headers to obtain the block lock state. A module

operating at 156.25 MHz at each lane is required.

3.3.3 Alignment marker lock [5: Clause 82.2.12]

Alignment marker lock waits for two valid alignment markers to obtain the lock

state. The process is started only after the block lock state is achieved on a particular

PCS lane. In alignment marker lock stage the PCS lane number received can be

identified, due to the fact that alignment makers are lane specific.

24

 Figure 3.8: 40GBASE-R Receiver Model

3.3.4 Lane deskew FIFO

We are introducing the lane deskew FIFO at this stage of the receiver PCS. FIFO per

each lane is implemented with the identified parameter values. Optimization for

25

parameters, width of 66 bits and depth of 32 locations are derived such that the

maximum skew for 40GBASE-R as specified in Error! Reference source not

found. is tolerated. FIFO read and write operations are carried out in 156.25 MHz

lane clocks.

3.3.5 Lane reorder [5: Clause 82.2.13]

PCS reorders the received PCS lanes according to the PCS lane number. This was

identified at the alignment marker lock stage.

3.3.6 Alignment marker removal [5: Clause 82.2.14]

In this stage PCS lanes are multiplexed together in the proper order to obtain the

original block stream that was at the transmitter. Alignment markers are deleted from

the block stream since they are not needed further. The BIP filed in the alignment

markers can be monitored to obtain error ratio related parameters.

3.3.7 Clock rate compensation FIFO

As discussed in section 2.2.3 clock rate compensation is carried out at the upper level

of receiver model. Addition/deletion of eight consecutive /I/ code blocks (a full

column of /I/s) is done in order to compensate clock rate differences. Hence the FIFO

should be implemented after the data from the four lanes get aggregated. Aggregated

data, with the capability of addition/deletion of full column of /I/s is formed after the

lane reorder and alignment removal stages. So the clock rate compensation FIFO is

positioned at this stage of the receiver model. In order to accommodate encoded data

the width the FIFO should be 66 bits and as deduced by the analysis in section 2.2.3

the depth of eight is sufficient.

3.3.8 Descrambler [5: Clause 82.2.15]

Descrambler processes the pay load of the 66 bit block (bit 2 to bit 65) to reverse the

effect of the scrambler. The descrambler polynomial is identical to the scrambler

polynomial.

𝐺(𝑥) = 1 + 𝑥39 + 𝑥58 (8)

Descrambler implementation is shown in Figure 3.9.

26

 Figure 3.9: Descrambler

 Source: Clause 49.2.10 [5]

3.3.9 Decoder [15]

Decoder uses the sync header two bits from the incoming 66 bit block to determine

the RXC<7:0>. Depending on the control block, to determine the corresponding

RXC signal decoder may need to consider the data payload as well. One 66 bit block

will be mapped into one XLGMII transfer, which is RXC<7:0> and RXD<63:0>

(Figure 3.10).

Figure 3.10: Decoder Output

Source: Clause 82.2.3.2 [5]

It should be noted that the optimized FIFO parameters suggested in 2.2.4 are valid

for any implementation of 40GBASE-R PCS sub layer conforming IEEE802.3ba

specification. The transmitter and receiver models described in 3.2 and 3.3 are only

one possibility of such system models introduced for the purpose of functional

verification of the suggested design. In other words, As far as it is abided by the

IEEE802.3ba standard, PCS sub layer modeling does not put any limitations on the

proposed FIFO design.

27

4. SIMULATION, RESULTS AND ACHIEVEMENTS

This chapter introduces the simulation criteria used for functional verification of

the analysis output discussed in the previous chapter. In the latter part of the

discussion, the simulation results will be analyzed to verify the functionality of the

proposed designs. Discussion flows in twofold manner separately for 10GABSE-X

and 40GBASE-R.

4.1 Simulation Environment

Both 10GBASE-X and 40GBASE-R systems are modeled using Verilog HDL. These

systems were simulated using ModelSim advanced simulation and debugging tool

from Mentor Graphics Corporation.

Two scenarios FIFO Empty and FIFO Full for both systems were simulated. FIFO

Empty situation is viable when FIFO read clock is faster than FIFO write clock.

FIFO can become full when FIFO write clock is faster than the FIFO read clock.

Both these conditions are undesirable for the proper operation of the systems.

Therefore operations at these situations were monitored.

At FIFO Empty potential scenario the signals of interest to be monitored were, Read

– Write pointer difference, FIFO Empty Flag and the Insert Request. Read – Write

pointer difference, FIFO Full Flag and the Delete Request were the desired signals at

the FIFO Full viable scenario.

The signals were captured using inbuilt “Wave Window” utility of ModelSim.

4.2 10GBASE-X Simulation and Results

For 10GBASE-X systems, data packets of size 10 Kbytes and 312.5 MHz ±200 PPM

clock rate difference were used. FIFOs of 10 bit width and 8 depth locations were

modeled. Desired wave forms were monitored at both FIFO Full and FIFO Empty

viable situations.

4.2.1 Waveforms captured for FIFO Full viable situation

Figure 4.1 depicts FIFO Full viable simulation results. Situation is viable when Write

clock is faster than the Read clock. As per the captured signals shown, whenever the

pointer difference goes beyond five, the Delete Request is set high, otherwise it

remains low. When the Delete Request is high, an existing ||R|| code group in the IPG

28

is removed, so the Read – Write pointer difference decreases avoiding FIFO being

Full. Throughout the whole simulation FIFO Full signal remains low; indicating

FIFO was not full all the time. So the proper operation is achieved.

Figure 4.1: Signals captured from ModelSim Wave simulation in a FIFO Full

condition viable scenario for 10GBASE-X

4.2.2 Waveforms captured for FIFO Empty viable situation

Figure 4.2: Signals captured from ModelSim Wave simulation in a FIFO Empty

condition viable scenario for 10 GBASE-X

Captured waveforms for FIFO Empty viable situation is shown in

Figure 4.2. As per the waveforms whenever the pointer difference goes below three,

the Insert Request is set high, otherwise it remains low. When the Insert Request is

high, a ||R|| code group is added to IPG, so the Read – Write pointer difference

increases avoiding FIFO being Empty. Throughout the whole simulation FIFO

Empty signal remains low; indicating FIFO was not empty all the time. So the proper

operation is achieved.

We have published the IEEE paper, “FIFO Design for IEEE 802.3 Standard

10GBase-X PCS and XGXS Sublayers” (ISBN: 978-1-4673-5653-4) related to this

piece of work in 4th International Conference on Intelligent Systems, Modelling and

Simulation,2013 [11].

29

4.3 40GBASE-R Simulation and Results

For 40GBASE-R systems, data packets of size 40 Kbytes (inclusive of 39.994Kbytes

of effective data) were simulated with 625 MHz ±100 PPM clock rate difference

between receiver and transmitter clocks. A bank of four FIFOs of 66 bit width and 32

depth locations were modeled as one per each lane for lane deskew purpose. A

separate FIFO with width of 66 bits and depth of eight locations was implemented

for clock rate compensation. Desired wave forms were monitored at both FIFO Full

and FIFO Empty viable situations.

4.3.1 FIFO Full viable situation

This situation is viable when Write clock is faster than the Read clock. The results

obtained are shown in Figure 4.3.

Figure 4.3: Signals captured from ModelSim Wave simulation in a FIFO Full

condition viable scenario for 40GBASE-R

Whenever the pointer difference goes beyond five, the Delete Request is set high,

otherwise it remains low. When Delete Request is high, an existing /I/ idle code

group in the IPG is removed, so the Read – Write pointer difference decreases

avoiding FIFO being Full. As can be seen from the captured waveforms in Figure

4.3, FIFO Full signal remains low throughout simulation indicating FIFO did not

meet the full condition. Hence the proper functionality is achieved.

4.3.2 FIFO Empty viable situation

When the Read clock is faster than the Write clock there is a possibility for the FIFO

to be empty. Whenever the Read – Write pointer difference goes below three, the

Insert Request is set high, otherwise it remains low. Figure 4.4 shows the captured

waveforms of desired signals.

30

Figure 4.4: Signals captured from ModelSim Wave simulation in a FIFO Empty

condition viable scenario for 40GBASE-R

When the Insert Request is high, a /I/ code group is added to IPG, so the Read –

Write pointer difference increases avoiding FIFO being Empty. As seen from Figure

4.4, throughout the simulation FIFO Empty flag remains at low condition. This

indicates that the FIFO did not meet the empty condition. Hence the proper operation

is verified.

The 40SBASE-R PCS sub layer transmitter and receiver described respectively in

sections 3.2 and 3.3 were used to model and simulate the proposed FIFO design for

40G. This optimization of FIFO parameters is valid and applicable for any other

40GBASE-R PCS sub layer receiver implemented adhering to IEEE802.3ba

specification.

The IEEE paper “Optimization of Receiver FIFO for IEEE802.3ba 40GBASE PCS

Sub Layer” (PID: 1570228452) will be published in 30th International Conference on

Information Networking, 2016 regarding this work on 40GBASE PCS sub layer

receiver.

31

4.4 Publication List

[1.] FIFO Design for IEEE 802.3 Standard 10GBase-X PCS and XGXS

Sublayers with Thayaparan, S. Proceedings of 4th International Conference on

Intelligent Systems, Modelling and Simulation, IEEE Computer Society,

Bangkok, 2013.

[2.] Optimization of Receiver FIFO for IEEE 802.3ba 40GBASE PCS Sublayer

with Thayaparan, S. Proceedings of 30th International Conference on

Information Networking, Kota Kinabalu, Malaysia, 2016.

32

5. CONCLUSIONS AND FUTURE WORKS

Chapter 5 Conclusions and Future Works is presented under two parts,

conclusions and future works. Conclusions winds up the facts that can be

formulated with the current results. Latter subsection future works suggests for

potential improvements.

5.1 Discussion and Conclusions

5.1.1 For 10 GBASE-X

For 10 GBASE-X systems, a FIFO bank consists of four FIFOs with the width of 10

bits is required by the design. The FIFO depth of eight is sufficient to handle ±100

PPM clock rate difference. With these parameters insert request to add ||R|| code

group should be raised whenever the read-write pointer difference is lesser than

three. When read-write pointer difference is greater than five, delete request should

be raised to remove one existing ||R|| code group. The FIFO is on a free run when

read-write pointer difference is between three and five. This design can also support

jumbo data packets of 9K bytes. This scheme was simulated and proper functionality

is verified.

In general, the XGXS and PCS sub layer ASIC designs for 10GBASE-X FIFO banks

use 32 depth and 10bit wide FIFOs. A bank of four such FIFOs requires 1280

(32*10*4) registers (or RAM bits). The proposed FIFO size reduces the requirement

to 320 (8*10*4) registers (or RAM bits). It saves the power and silicon area of 960

registers (or RAM bits) in the ASIC design, which is a notable contribution.

5.1.2 For 40 GBASE-R

The optimization for 40GBASE-R systems, proposed and verified by this research

consists of a FIFO scheme which is having FIFOs at two levels of the PCS receiver

model. For deskew purpose, a FIFO bank consists of four FIFOs with the width of 66

bits is required at each individual lane. This is the constraint driven by the design

specifications; four serial lanes of data at the physical layer and use of 64B/66B

encoding. Depth of 32 can tolerate the maximum possible skew specified by the

standard.

33

The scheme employs another FIFO at the upper level of the receiver model to

compensate for clock rate differences, with the width of 66 bits. As per our analysis

and simulation results a FIFO depth of 8 is sufficient to handle ±100 PPM clock rate

difference. With these parameters insert request to add a /I/ code group should be

raised, whenever the read-write pointer difference is lesser than three. Whenever the

pointer difference is exceeding five, delete request should be raised to remove an

existing /I/ code group. The proposed design was simulated and verified.

Also as per analysis in 2.2.3 this design can support super jumbo data packets up to

39.994 Kbytes of data. In order for the convenient integration with the upper layers

of IEEE802.3 it is advisable to implement this maximum super jumbo data packet in

two packets; as a packet of 32 Kbytes followed by a secondary packet consists of

remaining 7.994 bytes. Further even though there is no formal definition for super

jumbo packets and they are not standardized in IEEE std 802.3, in order to maintain

same bit error rate accuracy, extended frame sizes should not extend beyond 11455

bytes [20], [21]. Both cases suggest for packet sizes lower than the analyzed

maximum, thus allow IPG becoming available before 5000 clock cycle span. So in

all these situations proposed FIFO scheme and parameters are capable of handling

the maximum clock rate difference specified by the standard.

The analysis as well as the FIFO scheme proposed by this research is applicable and

valid for any other implementation of 40GBASE-R systems conforming

IEEE802.3ba standard. The suggested and verified design optimization may reduces

the number of registers (or RAM bits) required. This may lead to significant savings

in terms of power and silicon area of ASIC design.

5.2 Recommendation for Future Work

Currently the proposed FIFO designs for both 10GBASE-X and 40GBASE-R are

simulated and functionality is verified based on the simulation results. It is

recommended to emulate the systems in real hardware, such as on a FPGA (Field

programmable Gate Array) board and verify the proper behavior on hardware.

Further, analysis and verification of optimized FIFO design parameters for

100GBASE systems can be addressed.

34

REFERENCE LIST

[1.] R. Seifert and J. Edwards, The All-New Switch Book, The Complete Guide

to LAN Switching Technology, 2nd ed., New York: John Wiley & Sons,

2011.

[2.] Ethernet Task Force (2011, Mar), Home page of the IEEE P802.3ba 40Gb/s

and 100Gb/s Ethernet Task Force, [Online]. Available:

http://grouper.ieee.org/groups/802/3/ba/public/index.html.

[3.] C. Cole, J. D’Ambrosia, C. DiMinico, H. Frazier, A. Healey, J. Jaeger, J.

Jewell, M. Nowell, and S. Trowbridge, (2007, Nov.). An overview: The next

generation of ethernet, IEEE 802.3-HSSG Meeting [Online]. Available:

http://www.ieee802.org/3/hssg/public/nov07/index.htm

[4.] P. Reviriego, B. Huiszoon, V. L´opez, R. B. Coenen, J. A. Hern´andez, and

J. A. Maestro, “Improving Energy Efficiency in IEEE 802.3ba High-Rate

Ethernet Optical Links”, IEEE Syst. J., vol. 17, no 2, pp. 419-427, March-

April 2011.

[5.] IEEE Standards for Ethernet, IEEE Std 802.3™, 2012.

[6.] Merilee Ford et al., “Chapter 7 Ethernet Technologies,” in Internetworking

technology Overview, Cisco Systems, 1999.

[7.] Mark Gustlin et al. (2007 September).100GE and 40GEPCS Proposal

[Online]. Available:

http://grouper.ieee.org/groups/802/3/hssg/public/sept07/gustlin_01_0907.pdf

[8.] John Ambrosia et al., 40 Gigabit Ethernet and 100 Gigabit Ethernet

Technology Overview, ethernet alliance, June 2010.

http://grouper.ieee.org/groups/802/3/ba/public/index.html
http://www.ieee802.org/3/hssg/public/nov07/index.htm
http://grouper.ieee.org/groups/802/3/hssg/public/sept07/gustlin_01_0907.pdf

35

[9.] Mark Gustlin, 40 and 100 Gigabit Ethernet PCS and PMA Overview, Cisco

Systems Inc., October 2010.

[10.] Jorg Sommer et al., “Ethernet – A Survey on its fields of Application,” in

IEEE Communications Surveys and Communications, 2010, Vol. 12, No. 2.

[11.] Subramaniam Thayaparan and Anuradha Nanayakkara, “FIFO Design for

IEEE 802.3 Standard 10GBase-X PCS and XGXS Sublayers,” in 2013 4th

International Conference on Intelligent Systems, Modelling and Simulation,

Bangkok, 2013, pp. 589-591

[12.] Faisal Dada and Norbert Folkens. IPG Considerations [Online]. Available:

http://grouper.ieee.org/groups/802/3/ba/public/may08/folkens_01_0508.pdf#

page=3

[13.] Sowmya S Luckloor, “Introduction to 10 Gigabit 64B/66B”, October, 2001.

[14.] Kushan B Vadawala. “Universal Scrambler by using Verilog HDL”,

International Journal of Engineering Sciences and Research Technology,

March, 2014.

[15.] W.P. Ranjaula et al., “Implementation Techniques for IEEE 802.3ba

40Gbps Ethernet Physical Coding Sublayer (PCS)”, in 12th International

Conference on Electrical Engineering/Electronics, Computer,

Telecommunications and Information Technology, 2015.

[16.] Tom Warland. (2011, December 14). Understanding Skew in 100GBASE-

R4 applications [Online]. Available:

http://www.eetimes.com/documnet.asp?doc_id=1279294

http://grouper.ieee.org/groups/802/3/ba/public/may08/folkens_01_0508.pdf#page=3
http://grouper.ieee.org/groups/802/3/ba/public/may08/folkens_01_0508.pdf#page=3
http://www.eetimes.com/documnet.asp?doc_id=1279294

36

[17.] Robert Winter et al., Ethernet Jumbo Frames, ethernet alliance, November

12 2009.

[18.] Wikipedia, the free encyclopedia (2015, February 11). Jumbo frames

[online]. Available: https://en.wikipedia.org/wiki/Jumbo_frame

[19.] Sarath Pillai, (2014, July 15). What is a Jumbo Frame in Ethernet [Online]?

Available: http://www.slashroot.in/networking

[20.] Extended Frame Sizes for Next Generation Ethernet [Online]. Available:

https://www.psc.edu/~mathis/MTU/AlteonExtendedFrames_W0601.pdf

[21.] Doug Raid. (2007, October 26). Need To Know: Jumbo Frames in Small

Networks [Online]. Available:

http://www.smallnetbuilder.com/lanwan/lanwan-features/30201-need-to-

know-jumbo-frames-in-small-networks?limitstart=0

[22.] ModelSim User’s Manual, Software version 6.6d, Mentor Graphics

Corporation, Oregon, 2010.

[23.] IEEE Standard Verilog Hardware Description Language, IEEE Std 1364-

2001, 2001.

https://en.wikipedia.org/wiki/Jumbo_frame
http://www.slashroot.in/networking
https://www.psc.edu/~mathis/MTU/AlteonExtendedFrames_W0601.pdf
http://www.smallnetbuilder.com/lanwan/lanwan-features/30201-need-to-know-jumbo-frames-in-small-networks?limitstart=0
http://www.smallnetbuilder.com/lanwan/lanwan-features/30201-need-to-know-jumbo-frames-in-small-networks?limitstart=0

37

Appendix A: Verilog test bench for 10GBASE-X PCS Sublayer FIFO design

// ---

// This is the implementation of TestBench for Single Asynchronous

FIFO

// Note: FIFO FULL :-Wr_Clk>Rd_Clk; Wr_Clk T = 3199

// FIFO EMPTY :- Rd Clk>Wr_Clk; Wr_Clk T = 3200

// ---

// timescale unit/precision

`timescale 1ps / 1ps // each unit is 1 ps,& simulation has 1 ps

precision

moduleTestLaneFIFO;

parameterFIFO_width = 10; // 10 bits

parameterADDR_bits = 3; // 3 bits

// stimuli signal generation

regtstWr_Clock, tstRd_Clock, tstFIFOReset;

wiretstFIFO_Full, tstFIFO_Empty;

wiretstInsert_Req, tstDelete_Req;

wire [2:0] tstPtrDiff;

reg [FIFO_width-1:0] tstWrData; // FIFO Wirte In data

reg [31:0] TestData;

reg [11:0] ClkCounter;

wire [FIFO_width-1:0] tstDataOut;

wire [FIFO_width-1:0] tstNxtRdData;

wire [(ADDR_bits -1):0] tstFIFO_WrPtr;

wire [(ADDR_bits -1):0] tstFIFO_RdPtr;

wire [(ADDR_bits -1):0] tstFIFO_NxtRdPtr;

wire [(ADDR_bits -1):0] tstCrntWrPtrGray;

wire [(ADDR_bits -1):0] tstCrntRdPtrGray;

wire [(ADDR_bits -1):0] tstNxtRdPtrGray;

wire [(ADDR_bits -1):0] tstNxtNxtRdPtrGray;

wire [(ADDR_bits -1):0] tstSyncdWrPtr;

wiretstReadEn;

wire [2:0] tstCounter;

// UUT instantation

LaneFIFOUUT(

 .Wr_Clock(tstWr_Clock),

 .Rd_Clock(tstRd_Clock),

 .FIFOReset(tstFIFOReset),

 .CrntWrData(tstWrData),

 .InsertReq(tstInsert_Req),

 .DeleteReq(tstDelete_Req),

 .CrntWrPtr(tstFIFO_WrPtr),

 .CrntRdPtr(tstFIFO_RdPtr),

 .NxtRdPtr(tstFIFO_NxtRdPtr),

 .PtrDiff(tstPtrDiff),

 .FIFO_Full(tstFIFO_Full),

 .FIFO_Empty(tstFIFO_Empty),

 // Testing purpose only

 /// TestClkCounter,

 .CrntRdData(tstDataOut),

 .NxtRdData(tstNxtRdData),

38

 .CrntWrPtrGray(tstCrntWrPtrGray),

 .CrntRdPtrGray(tstCrntRdPtrGray),

 .NxtRdPtrGray(tstNxtRdPtrGray),

 .NxtNxtRdPtrGray(tstNxtNxtRdPtrGray),

 .SyncWrPtr(tstSyncdWrPtr),

 .ReadEn(tstReadEn),

 .Counter(tstCounter)

);

// Define characters

`defineStartChar 10'b1101101000 // K27.7

`defineTerminateChar 10'b1011101000 // K29.7

`defineCharA 10'b0011110011 // K28.3

`defineCharK 10'b0011111010 // K28.5

`defineCharR 10'b0011110100 // K28.0

`defineWrClkCycles 12'd2500 // 10k / 4 = 2500

 // ---

 // Initialization

 // ---

initial

begin

tstFIFOReset = 1'b0; // reset FIFO

 #16010 tstFIFOReset = 1'b1;

end

 // ---

 // Clock signal generation

 // ---

 /* Notes:

 FIFO_FULL & Delete request condition being testing

tstWr_Clock: 312.5 MHz + 100 ppm => 312531.25 kHz => 3199.68 ps

tstRd_Clock: 312.5 Mhz - 100 ppm => 312468.75 kHz => 3200.3 ps

tstWr_Clock: 312.5 MHz + 200 ppm => 312562.5 kHz => 3199.3 ps

tstRd_Clock: 312.5 Mhz - 200 ppm => 312437.5 kHz => 3200.6 ps

 */

 // Write pointer to be derived on received/recovered clock

initial // Clock generator

begin

tstWr_Clock = 1'b1;

forever #1599 tstWr_Clock = !tstWr_Clock; // invert every 3199.68 /

2 = 1599.84ps

end

 // Read pointer to be derived on the local clock

initial // Clock generator

begin

tstRd_Clock = 1'b1;

forever #1600 tstRd_Clock = !tstRd_Clock; // invert every 3200.3 / 2

= 1600.15ps

end

 // ---

 // Data packet generation

 // ---

39

always @ (posedgetstWr_Clock or negedgetstFIFOReset)

if (!tstFIFOReset)

begin

ClkCounter = 0;

end

else

begin

if(ClkCounter>= `WrClkCycles)

ClkCounter = 1;

else

ClkCounter = ClkCounter + 1;

end

 //always @(ClkCounter>= 0) // start character

always @ (posedgetstWr_Clock or negedgetstFIFOReset)

if (!tstFIFOReset)

begin

tstWrData = `CharA; // idle

TestData = 32'b0;

end

else

begin

TestData = $random;

if(ClkCounter == 1)

tstWrData = `StartChar;

else if(ClkCounter == (`WrClkCycles - 3)) // 2497 = T

tstWrData = `TerminateChar;

else if(ClkCounter == (`WrClkCycles - 2)) // 2498 = A

tstWrData = `CharA;

else if(ClkCounter == (`WrClkCycles - 1)) // 2499 = R is chosen as

the second I following T.

tstWrData = `CharR;

else if(ClkCounter == `WrClkCycles) // 2500 = K

tstWrData = `CharK;

else

 // TxData = TestData[(Lane0FIFO_width - 1):0];

tstWrData = TestData[(FIFO_width - 1):0];

end

// ---

// ---

initial

#81_000_000 $stop;

// --

endmodule

40

Appendix B: Verilog testbench for 40GBASE-R PCS sub layer Model

// ---

// File Name: TestFourtyG_PCS.v

// Description: This is the implementation of TestBench for 40G

transmitter

// Input: tstPCSReset - Active Low Reset

// Output:

// Notes:

// TODO:

// ---

// timescale unit/precision

`timescale 1ps / 1ps // each unit is 1 ps, & the simulation has 1 ps

precision

module TestFourtyG_PCS;

reg tstTxClock, tstPCSReset, tstPCSEn, tstRxClock;

reg tstSerialLaneClk, tstSerialLaneWrClk, tstSerialLaneRdClk,

NxtSerialLaneWrClk, NxtSerialLaneRdClk;

reg [14:0] SerialClkCntr;

reg [14:0] SerialClkCntrNxt;

reg tstLaneWrClk, tstLaneRdClk, nxtLaneWrClk, nxtLaneRdClk;

reg [63:0] tstTxData;

reg [7:0] tstTxCtrl;

wire [63:0] tstRxData;

wire [7:0] tstRxCtrl;

wire tstRxRdy, tstTxRdy;

`define WrClkCycles 13'd5001

parameter TxClkPeriodbyTwo = 10'd799;

parameter RXClkPeriodbyTwo = 10'd800;

parameter SerialLaneWrClkPeriodbyTwo = 6'd48;

parameter SerialLaneRdClkPeriodbyTwo = 6'd48;

parameter BlockType_S = 8'h78; // PCS /S/ = 0x78

parameter BlockType_T0 = 8'h87; // PCS /T0/ = 0x87

parameter BlockType_T1 = 8'h99;

parameter BlockType_T2 = 8'hAA;

parameter BlockType_T3 = 8'hB4;

parameter BlockType_T4 = 8'hCC;

parameter BlockType_T5 = 8'hD2;

parameter BlockType_T6 = 8'hE1;

parameter BlockType_T7 = 8'hFF;

reg [63:0] TestData;

reg [12:0] ClkCounter;

reg [7:0] CkEdgeCounterTx;

reg [7:0] CkEdgeCounterTxNxt;

reg [7:0] CkEdgeCounterRx;

reg [7:0] CkEdgeCounterRxNxt;

integer i;

41

// ---

// UUT Instantation

// ---

FourtyG_PCS UUT_PCS(

 .TxClock(tstTxClock), // input TxClock,

 .SerialLaneWrClk(tstSerialLaneWrClk),

 .LaneWrClk(tstLaneWrClk),

 .LaneRdClk(tstLaneRdClk),

 .TxData(tstTxData), // input [63:0] TxData,

 .TxCtrl(tstTxCtrl), // input [7:0] TxCtrl,

 .PCSReset(tstPCSReset), // input PCSReset,

 .PCSEn(tstPCSEn), // input PCSEn,

 .RxClock(tstRxClock), // input RxClock,

 .SerialLaneRdClk(tstSerialLaneRdClk),

 .RxData(tstRxData), // output [63:0] RxData,

 .RxCtrl(tstRxCtrl), // output [7:0] RxCtrl

 .TxRdy(tstTxRdy), // output TxRdy,

 .RxRdy(tstRxRdy) // output RxRdy

);

// ---

// Clock signal generation

// Serial Lane clock: 10.3125 G => 96.9697 ps => T/2 = 48 ps

// tstSerialLaneClk = 24 ps is used to obtain serial lane Rd Wr

// clocks of T/2 = 48 ps with =/- 100 ppm

// ---

 initial // Clock Generator

 begin

 tstSerialLaneClk = 1'b0;

 forever #24 tstSerialLaneClk = !tstSerialLaneClk; // invert

every (1/10.3125) / 4 = 24.2424

 end

// ---

// Clock signal generation

// Serial Lane clock: 10.3125 G => 96.9697 ps

// 100 ppm => 100 for 10^6 => 1 for 10 000 clks

// stop the 10001 clk -> slower clk

// having the 10001 as a normal clock -> faster clk

// tstSerialLaneWrClk(47) > tstSerialLaneRdClk(49) => FIFO_FULL

// tstSerialLaneWrClk(49) < tstSerialLaneRdClk(47) => FIFO_EMPTY

// Generated period of both tstSerialLaneWrClk & tstSerialLaneWrClk

are 96 ps

// Expected period of both tstSerialLaneWrClk & tstSerialLaneWrClk

are 96.9697 ps

// ---

initial

 begin

 tstSerialLaneWrClk = 1'b0;

 tstSerialLaneRdClk = 1'b0;

 SerialClkCntr = 15'd0;

 end

always @(*) // Combinational logic

 begin

 if (SerialClkCntr >= 15'd20001) // counts 0 : 20001

 SerialClkCntrNxt <= 15'd0;

42

 else

 SerialClkCntrNxt <= #1 SerialClkCntr + 15'd1;

 end

always @ (posedge tstSerialLaneClk)

 begin

 SerialClkCntr <= #1 SerialClkCntrNxt;

 end

always @ (posedge tstSerialLaneClk)

begin

 if (SerialClkCntr >= 15'd20000)

 begin

 // Delete req Assert: FIFO Full possible

 tstSerialLaneRdClk <= #1 1'b0; // slow clk

 tstSerialLaneWrClk <= #1 ~tstSerialLaneWrClk; // fast clk

// // Insert req Assert: FIFO Empty possible

// tstSerialLaneWrClk <= #1 1'b0; // slow clk

// tstSerialLaneRdClk <= #1 ~tstSerialLaneRdClk; // fast clk

 end

 else

 begin

 tstSerialLaneWrClk <= #1 !tstSerialLaneWrClk;

 tstSerialLaneRdClk <= #1 !tstSerialLaneRdClk;

 end

end

// ---

// Clock Signal Generation: Lane Parallel input/output clock

// tstSerialLaneWrClk /66 = tstLaneWrClk; tstLaneWrClk * 4 =

tstTxClock

// clock: 156.25 M: period 6336 ps(expected 6400 ps)

// When crossing boundaaries having a diff of 96 ps 6330ps :

6432ps

// ---

initial

 begin

 tstLaneWrClk = 1'b0;

 CkEdgeCounterTx = 7'b0000000;

 tstLaneRdClk = 1'b0;

 CkEdgeCounterRx = 7'b0000000;

 end

// Tx parallel clock generation

always @ (posedge tstSerialLaneWrClk)

 begin

 tstLaneWrClk <= #5 nxtLaneWrClk;

 end

always @ (posedge tstSerialLaneWrClk)

 begin

 CkEdgeCounterTx <= #1 CkEdgeCounterTxNxt;

 end

always @(*) // Combinational logic

 begin

 if (CkEdgeCounterTx >= 7'd32)

 CkEdgeCounterTxNxt = 7'b0000000;

 else

 CkEdgeCounterTxNxt = #1 CkEdgeCounterTx + 7'b0000001;

 end

43

always @(*)

 begin

 if (CkEdgeCounterTx >= 7'd32)

 nxtLaneWrClk = !tstLaneWrClk;

 else

 nxtLaneWrClk = tstLaneWrClk;

 end

// Rx parallel clock generation

always @ (posedge tstSerialLaneRdClk)

 begin

 tstLaneRdClk <= #5 nxtLaneRdClk;

 end

always @ (posedge tstSerialLaneRdClk)

 begin

 CkEdgeCounterRx<= #1 CkEdgeCounterRxNxt;

 end

always @(*) // Combinational logic

 begin

 if (CkEdgeCounterRx >= 7'd32)

 CkEdgeCounterRxNxt = 7'b0000000;

 else

 CkEdgeCounterRxNxt = #1 CkEdgeCounterRx + 7'b0000001;

 end

always @(*)

 begin

 if (CkEdgeCounterRx >= 7'd32)

 nxtLaneRdClk = !tstLaneRdClk;

 else

 nxtLaneRdClk = tstLaneRdClk;

 end

// ---

// Clock signal generation

// RX_CLK & TX_CLK 625 MHz: period = 1591ps (1600 expected)

// Sometimes this goes for 1584: 1679 diff of 95 ps

// ---

initial

 begin

 tstTxClock = 1'b0;

 tstRxClock = 1'b0;

 end

// Clock Generator Tx

always @(posedge tstLaneWrClk)

 begin

 repeat (8)

 begin

 tstTxClock = # ((SerialLaneWrClkPeriodbyTwo * 2 * 66) / 8)

~tstTxClock;

 end

 end

// Clock Generator Rx

44

always @(posedge tstLaneRdClk)

 begin

 repeat (8)

 begin

 tstRxClock = # ((SerialLaneRdClkPeriodbyTwo * 2 * 66) / 8)

~tstRxClock;

 end

 end

// ---

// Initialization

// ---

// Reset Signal : Reset pulse width = (2 * 1584) + 5

initial

 begin

 tstPCSReset = 1'b0; // Active low reset pulse

 @ (posedge tstLaneWrClk);

 @ (posedge tstLaneWrClk);

 #6

 tstPCSReset = 1'b1;

 end

 // Enable signal: Enable is activated at(3 * 1584) + 25

initial

 begin

 tstPCSEn = 1'b0; // not eanabled

 @ (posedge tstLaneWrClk);

 @ (posedge tstLaneWrClk);

 @ (posedge tstLaneWrClk);

 #26

 tstPCSEn = 1'b1;

 end

// ---

// Test Data Generation

// ---

always @ (posedge tstTxClock)

 begin

 if((tstPCSReset == 1'b0) || (!tstPCSEn) || (!tstRxRdy))

 begin

 ClkCounter = 13'd0;

 end

 else

 begin

 if(ClkCounter >= `WrClkCycles)

 ClkCounter = 13'd1;

 else

 ClkCounter = ClkCounter + 13'd1;

 end

 end

// ---

// Test Data Packet considerarions

// Minimum IPG = 96 bits = 12 bytes

// Maximum clock rate diff +/- 100 ppm => 1 clk diff for 5000 clks

// Data Pkt :-

// Clk1: S0 D1 D2 D3 D4 D5 D6 D7 - Data 7

// Clk5000: D0 D1 D2 T I0 I1 I2 I3 - Data 3 : 5000 clks

45

// Clk5001: I0 I1 I2 I3 I4 I5 I6 I7

// Size: 7 + 3 + (8 * 4998) = 39994 Bytes

// ---

always @ (posedge tstTxClock or negedge tstPCSReset)

begin

 if ((tstPCSReset == 1'b0)|| (!tstPCSEn)) // Active Low Reset

assumed

 begin

 TestData = {64{1'b0}};

 tstTxData =

64'b00000111_00000111_00000111_00000111_00000111_00000111_00000111_0

0000111; // idle

 tstTxCtrl = 8'b11111111;

 end

 else

 begin

 TestData = $random;

 if (!tstRxRdy)

 begin

 tstTxData =

64'b00000111_00000111_00000111_00000111_00000111_00000111_00000111_0

0000111; // idle

 tstTxCtrl = 8'b11111111;

 end

 else if(ClkCounter == 1)

 begin

 tstTxData ={TestData[55:0],8'hFB}; // Start: SDDD DDDD

 tstTxCtrl = 8'b00000001;

 end

 else if(ClkCounter == (`WrClkCycles - 1)) // T3: DDDT IIII

 begin

 tstTxData = {8'h07, 8'h07, 8'h07, 8'h07, 8'hFD,

TestData[23:0]};

 tstTxCtrl = 8'b11111000;

 end

 else if(ClkCounter == `WrClkCycles) // I

 begin

 tstTxData =

64'b00000111_00000111_00000111_00000111_00000111_00000111_00000111_0

0000111; // idle 8 octects

 tstTxCtrl = 8'b11111111;

 end

 else

 begin

 tstTxData = TestData;

 tstTxCtrl = 8'h00; // Data

 end

 end

end

// ---

initial

 #600_000_000 $stop;

// ---

endmodule

