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Abstract 

 
Keywords: FIFO, IEEE802.3, PCS Sub layer, 40GBASE-R, 10GBASE-X 

 
Local Area Networks (LAN) are based on Ethernet technology. Commonly used 10 and 40 

Gigabit Ethernet systems are adopting IEEE 802.3 standards. 
The aim of this dissertation is to optimize the FIFO design for the receiver of Physical 

Coding Sub layer (PCS) specified by IEEE 802.3 standards. This dissertation is having two 

phases. In the first phase, optimal FIFO for IEEE 802.3ae 10GBASE-X PCS receiver is 

designed and implemented. Proper operation of the proposed design is verified with 
simulation results. In the second phase, possible optimization for receiver FIFO of IEEE 

802.3ba 40GBASE-R PCS layer is identified. Potential implementation for 40GBASE-R 

PCS is simulated with proposed FIFO design, to verify the proper functionality. 
Proposed designs will save gate count, power and the silicon area of ASIC design 

considerably. As future work it is suggested to emulate the proposed design with a suitable 

hardware. 
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1. INTRODUCTION 

Chapter 1, Introduction is organized into five subsections. Section 1.1 provides 

introduction to the research. Problem statement is defined in section 1.2.  Section 

1.3 gives the objective of the research work. Research Methodology, section 1.4 

describes the how the research had been conducted. Resource requirements for the 

project and the scope of project are coming under section 1.5 and 1.6 respectively. 

1.1  Introduction 

Nowadays consumer Internet Protocol (IP) traffic demand is bolstering. High 

definition video, high speed broadband access, growth of network aggregation 

applications, growing number of server and computer applications with significant 

bandwidth need, are some contributors for the huge data traffic demands. Ethernet is 

the ubiquitous connectivity technology for Local Area Networks (LAN) due to its 

low cost, known reliability and simplicity. Rising volume of IP traffic demands for 

high speed LAN interfaces, 10 gigabits per second (Gbps) or even something beyond 

that. Commonly used 10 Gigabit and 40 Gigabit Ethernet systems are adopting IEEE 

802.3 standards [1]-[10]. IEEE802.3ae for 10Gbps and IEEE802.3ba supporting 

40Gbps data transfer rate were standardized in order to drive this rapid growth in IP 

data traffic. 

 

1.2  Problem Statement 

A family of 10 Gb/s physical layer implementations, consists of 10GBASE-CX4 [5: 

Clause 54] and10GBASE-LX4 [5: Clause 53] is referred as 10GBASE-X. These are 

based upon 8B/10B data coding method. As defined by the IEEE802.3 standards, 

these designs are having independent four serial lanes at their, receive and transmit 

data paths [5: Clause 48] of the PCS and XGXS sub layer. 

The 40GBASE-R refers to a family of Physical Layer implementations based upon 

64B/66B data coding method. The 40GBASE-R Physical Coding Sub layer (PCS) 

performs encoding (decoding) of data from (to) the 40Gb/s Media Independent 

Interface (XLGMII) to 64B/66B code blocks, distribute data to multiple lanes, and 
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transfer the encoded data to the PMA. 40GBASE-R PCS is using four encoded bit 

streams to communicate with PMA.  

Hence in both scenarios lane synchronization has to be carried out at the receiver 

side of the PCS. Therefore at the receiver, one FIFO is required by each lane to store 

the data received. Since there are four serial lanes, a bank of four FIFOs has to be 

employed at the PCS receiver of each physical layer implementation. 

In order to implement the FIFO banks at the PCS layer of the receiver either RAM or 

register arrays are used. Both RAM and the register arrays are power hunting and in 

order to accommodate them considerable area has to be allocated in the ASIC design. 

Therefore an optimal FIFO design for IEEE802.3ae 10G PCS sub layer receiver as 

well as optimization for IEEE802.3ba 40G PCS layer receiver FIFO, can save a 

significant amount of power and silicon area. 

  

1.3  The Aims and Objectives of the Research 

The aim of this research project is to study and analyze IEEE 802.3 standard 

specifications, clause 48 and clause 82 of [5] respectively for 10G and 40G Ethernet. 

With the analysis possible optimization for receiver FIFO parameters are identified. 

Proposed FIFO designs are simulated and desired signals are monitored to verify the 

proper functionality. Analysis in the 10G is applicable for both 10GBASE-CX4 and 

10GBASE-LX4 systems. Also the particular FIFO design proposed is applicable for 

all 40GBASE-R systems. 

 

1.4  Research Methodology 

The research methodology adhered is as follows.  Relevant standard clauses from [5] 

were studied, and data transmission was analyzed in order to identify optimization 

for PCS sub layer receiver FIFO designs. Proposed designs are modeled and 

implemented in a simulation environment. The functionalities of proposed designs 

are verified using simulation results.  
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1.5  Resource Requirements 

PCS layer for the 10G is specified in clause 48 of section 4 of [5]. Clause 82 of 

section 6 of [5] specifies PCS layer for 40G. The proposed designs are simulated 

using ModelSim Simulation software [22]. Verilog, Hardware Description Language 

[23] (HDL) is used to model the systems. The contribution of the proposed design for 

the ASICs is quantified considering the general values being used in the industry. 

 

1.6  Scope of the Project 

This research project is in the scope of Ethernet for LAN based on IEEE802.3 

standard. It introduces optimization for PCS receiver FIFO of 10G and 40G Ethernet 

systems. 
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2.   ANALYSIS 

Chapter 2 Analysis is divided in to two parts. This includes analysis of IEEE802.3 

clause 48 for 10GBASE-X systems followed by analysis of IEEE802.3 clause 82 

for 40GBASE-R systems. Under each type of systems first the functional block 

diagram is investigated. After that there is an independent flow of subsections 

dedicated to following discussions. Subsection 1 type of encoding used, subsection 

2 special code groups. Determination of FIFO depth based on lane alignment and 

cock rate compensation comes under subsections 3 and 4. As the last subsection 

proposed optimization for FIFO parameters will be discussed for each case. 

 

2.1  10GBASE-X Systems 

Figure 2.1 taken from [5] shows the positioning of different sub layers of IEEE802.3 

Carrier Sense Multiple Access with Collision Detection (CSMA/CD) LAN model 

and their relationship to Open System Interconnection (OSI) reference model. 

The purpose of the XGMII (10 Gigabit Media Independent Interface) is to provide a 

simple, inexpensive, and easy-to-implement interconnection between the MAC 

(Media Access Control) sub layer and the Physical Layer (PHY). XAUI (10 Gigabit 

Attachment Unit Interface) is an optional layer, used to extend the operational 

distance of the XGMII. XGMII Extender sub layer (XGXS), is comprised of two 

XGXS layers: one at the RS (Reconciliation Sub layer) end (DTE XGXS), and other 

XGXS at the PHY end (PHY XGXS) and a XAUI between them. The purpose of the 

XGMII Extender is to extend the operational distance of the XGMII and to reduce 

the number of interface signals. 

The transmitter and the receiver functional block diagram for the 10GBASE-X PCS 

layer is shown in, Figure 2.2. 
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Figure 2.1: Positioning of XGXS and PCS Sub layers in IEEE 802.3 10G Model 

Source: Clause 47 [5] 

 

2.1.1  8B/10B encoding 

The 10GBASE-X systems are using 8B/10B encoding and 10B/8B decoding 

algorithms [5: Clause 48.2.3]. The PCS maps 8 bit XGMII characters into 10-bit 

code-groups, and vice versa, using the 8B/10B block coding scheme. The mapping of 

XGMII characters to PCS code-groups is specified in     Table 2.1. 
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Figure 2.2: Functional block diagram of the 10GBASE-X physical layer 

Source: Clause 48.1.6 [5] 

 

     Table 2.1: XGMII characters to PCS code-group mapping 

XGMII  

TXC 

XGMII  

TXD 

PCS code-group Description 

0 00 through FF Dxx.y  Normal data transmission 

1 06 K28.0 or K28.3 or K28.5 or 

D20.5 

Assert LPI 

1 07 K28.0 or K28.3 or K28.5 Idle in ||I|| 

1 07 K28.5 Idle in ||T|| 

1 9C K28.4 Sequence 

1 FB K27.7 Start 

1 FD K29.7 Terminate 

1 FE K30.7 Error 

      Source: Clause 48.2.3 [5] 
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The mapping of PCS code-groups to XGMII characters is specified in       Table 2.2. 

 

      Table 2.2: PCS code-group to XGMII character mapping 

XGMII 

RXC 

XGMII RXD PCS code-group Description 

0 00 through FF Dxx.y Normal data transmission 

1 06 K28.0 or K28.3 or K28.5 

or D20.5a 

Assert LPI 

1 07 K28.5 Idle in ||I|| 

1 9C K28.4 Sequence 

1 FB K27.7 start 

1 FD K29.7 Terminate 

1 FE K30.7 Error 

      Source: clause 48.2.3 

 

 

Figure 2.3: XGMII character stream to PCS code group mapping example 

Source: Clause 48.2.3 [5] 

 

Hence at the PCS transmitter an 8 bit XGMII character is mapped into 10 bit PCS 

code group. In order to accommodate this 8B to 10B encoded data, the width of the 

receiver FIFO at the PCS sub layer should be 10 bits. Further data received on data 

path consist of four independent serial lanes, and these data should be stored 
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independently at the receiver. So at the receiver, there should be a bank of four 

FIFOs, one per each lane. The recovered clock from the serial lane data is used to 

store the received data in the FIFOs. It means the FIFO write pointer is controlled by 

the recovered clock. The local clock is used to read the stored data and hence 

controlling the FIFO read pointer. 

2.1.2  Special code groups [5] 

Idle ordered sets (||I||) are transmitted in all four serial lanes continuously and 

repetitively whenever the XGMII is idle. This is denoted as TXD 

<31:0>=0x07070707 and TXC <3:0>=0xF. ||I|| provides a continuous fill pattern to 

establish and maintain lane synchronization, perform lane-to-lane deskew and 

perform PHY clock rate compensation.  

A sequence of ||I|| ordered sets consists of one or more consecutively transmitted 

||K||, ||R|| or ||A|| ordered sets. The purpose of randomizing the ||I|| sequence is to 

reduce 10GBASE-X electromagnetic interference (EMI) during idle state. 

The idle character ||I|| on the XGMII side is converted into ||A||, ||K|| and ||R|| 

characters within the transmitters of the PCS and XGXS sub layers. The ||A||, ||K|| 

and ||R|| characters are respectively used for the lane alignment, code group 

alignment and clock rate compensation purposes at the receiver side of the PCS and 

XGXS sub layers. Similarly, ||A||, ||K|| and ||R|| characters received by the receiver of 

the PCS and XGXS sub layer are converted into idle character ||I|| within the receiver 

of the PCS and XGXS sub layers. 

The depth of the receiver FIFO is determined based on two factors.  One is the lane 

alignment at the receiver side. The other is the clock rate compensation in the worst 

case scenario at the receiver. 

2.1.3  Lane alignment 

Skew is introduced between lanes by both active and passive elements of a 

10GBASE-X link. Allowable skew for all link elements are specified in the 

budget. The skew budget shown in  

             Table 2.3 is given at the IEEE Std 802.3 Clause 48.2.4.2.2 [5].  
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             Table 2.3: Skew Budget for 10GBASE-X 

Skew 

Source 

Occurrences Skew Total 

Skew 

PMA Tx 1 1 UI 1 UI 

PCB 2 1 UI 2 UI 

Medium 1 < 18 UI < 18 UI 

PMA Rx 1 20 UI 20 UI 

Total < 41 UI 

                         Source: Clause 48.2.4.2.2 [5] 

 

Unit Interval (UI) is the period of time allocated for the transmission of one symbol 

on one channel. Clock rate of 312.5 MHz implies 3200 ps for one code group, which 

is a transfer of 10 bits. Therefore 320 ps would be the time interval for one bit 

transfer. 

As per the budget, the maximum possible skew is 40 bits in serial lanes. Since 10 bits 

are stored in a single location at the receiver side, 10 bits represent one write pointer. 

It means the ||A|| code group in all four lanes can be misaligned by maximum of four 

write pointers at the FIFO. Therefore the FIFO depth required by the lane alignment 

is 5.  

2.1.4  Clock rate compensation 

The worst case scenario is when the data packets have their maximum size and back 

to back with minimum Inter Packet Gap (IPG). In addition, the maximum clock rate 

difference between the read and write pointers has to be considered. The read and 

write pointer difference should be in its maximum of ±100 PPM at the worst case 

operating condition [5: Clause 48.1.4], [12]. It means the read pointer clock can be 

+100PPM and the write pointer can be at -100PPM or vice versa. In both cases, the 

difference between read and write pointers is 200PPM in its worst scenario. It can be 

translated into one read-write pointer difference out of 5000 clock cycles. 

Next, we consider the worst case operation in terms of data packet size with 

minimum IPG. Even though the IEEE std. is limiting the max frame size to 1518 

bytes [5: Clause 4.4.2], some applications may use jumbo data packets which may 
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consist up to 9 Kbytes of data [17] – [19]. For this analysis we consider the 

maximum jumbo data packet size of 10 Kbytes. In order to transfer 10 Kbytes of data 

packet by four lanes, we need 2500 clock cycles. It means every 2500 cycles, we 

have an opportunity to insert or delete one ||R|| code group in the IPG to compensate 

the clock rate difference. 

Since one read-write pointer difference can occur only after 5000 clock cycles at 

±100PPM, there will be at least two IPGs before one read-write pointer difference 

occurs. One pointer location is required for the cross-domain synchronization of the 

FIFO control signals. Therefore it can be concluded that the minimum of two FIFO 

locations are sufficient between the add request of the ||R|| code group in IPG and the 

FIFO empty condition. Similarly the minimum of two FIFO locations are sufficient 

between the delete request of the ||R|| code group in IPG and the FIFO overflow 

condition. 

2.1.5  Optimal receiver FIFO parameters for 10GBASE-X PCS sub layer [11] 

A FIFO bank consists of four FIFOs with the width of 10 bits is required by the 

design. The FIFO depth of 8 is sufficient to handle the ±100 PPM clock rate 

difference. The FIFO read and write pointers have to be operated in a round-robin 

method. If the FIFO depth is selected to be 8, the following 2 rules are applied: 

1. When the read-write pointer difference is lesser than three, the insert request 

should be raised to add a ||R|| code group. The FIFO empty condition is when 

the current pointer difference becomes zero and previous pointer difference is 

one. 

2. When the read-write pointer difference is greater than five, the delete request 

should be raised to remove one ||R|| code group. When the previous pointer 

difference is seven and current pointer difference becomes zero, the FIFO 

overflow condition is met. 

The FIFO is on a free run when the read write pointer difference is between three 

and five. The initial setting for read pointer can be at four. It means the system 

can start reading the data from the FIFO bank after writing four locations. 
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2.2  40GBASE-R Systems 

 

Figure 2.4: Positioning of 40G Ethernet 

Source: Clause 80.1.3 [5] 

 

Figure 2.4 shows the positioning of different sub layers of 40GBASE-R. The 

40GBASE-R refers to a family of Physical Layer implementations based upon 

64B/66B data coding method. The 40GBASE-R PCS performs encoding (decoding) 

of data from (to) the 40Gb/s Media Independent Interface (XLGMII) to 64B/66B 

code blocks, distribution of data to multiple lanes and transmission the encoded data 

to the PMA. 40GBASE-R PCS is using four encoded bit streams to communicate 

with PMA [5]. Therefore lane synchronization has to be carried out at the receiver 

side and at the receiver, one FIFO is required by each lane to store data received. 

Hence a bank of four FIFOs needs to be employed at PCS of the receiver. XLGMII 

sub layer is the corresponding counterpart of XGMII for 10GBASE-X [15]. 

Functional block diagram of 40GBASE-R PCS is shown in Error! Reference 

source not found.. PCS uses eight octet wide data path (RXD <63:0>, TXD<63:0>) 
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and TXC<7:0>, RXC<7:0> signals to communicate with XLGMII side. When 

communicates with PMA, PCS uses four encoded serial bit streams. 

 

 

Figure 2.5: Functional block diagram 40GBASE-R physical layer 

Source: Clause 82.1.5 [5] 
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   Figure 2.6: 64B/66B block formats 

   Source: Clause 82.2.3.3 [5] 

 

2.2.1  Idle Control Character /I/ 

Idle control characters (/I/) are transmitted when idle control characters are received 

from the XLGMII. Idle control characters may be added or deleted by the PCS to 

adapt between clock rates. In order to support deskew and reordering of individual 

PCS lanes at the receive PCS, alignment markers are added periodically to each PCS 

lane. The transmit process must delete idle control characters or sequence ordered 

sets to accommodate the transmission of alignment markers. The PCS receive 

process insert /I/ characters in order to accommodate any rate differences due to the 

removal of alignment markers.  
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Table 2.4: Control codes 

 

Source: Cause 82.2.3.4 [5] 

 

Here Also, the depth of the FIFO is decided based on two factors; Lane alignment at 

the receiver side and the clock rate compensation at the receiver in the worst case 

scenario. 

 

2.2.2  Lane Alignment Consideration 

Data distribution over multiple lanes, four in the case of 40GBASE-R, is supported 

in the Physical layer. Data from multiple lanes need to be aligned at the receiver. 

Periodic insertion of an alignment marker allows the lane alignment at the receiver. 

 

Table 2.5: Maximum skew for PCS 

PCS Maximum Skew Maximum Skew variation 

40GBASE-R 180 ns (~1856 bits) 4 ns (~41 bits) 

100GBASE-R 180 ns (~928 bits) 4 ns (~21 bits) 

 Source: Clause 82.2.12 [5] 

Error! Reference source not found. showing the skew requirements for 40GBASE-

R PCS is taken from IEEE Std 802.3 Section 6, clause 82.2.12 [5]. According to 

Table 2.5 maximum possible skew at PCS receive is 180 ns and the maximum skew 

variation [16] at PCS receive is 4 ns. Hence the maximum skew at PCS receive is 
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expected to be a value lying in the range of 176 ns to 184 ns. For the design 

optimization purpose we can consider the maximum possible skew at the PCS 

receive to be 184 ns. 

 

For PMA sub layers supporting 40GBASE-R interfaces, the number of PCSLs z is 4, 

and the nominal signaling rate R of each PCSL is 10.3125 GBd. [5: Clause 83.5.2]. 

Signaling rate of 10.3125 GBd results in a Unit Interval (UI) time of, 

1

10.3125
= 96.9697 𝑝𝑠   (1) 

 

Therefore 184 ns corresponds to, 

184 𝑛𝑠

96.9697 𝑝𝑠
=  1897.49 𝑈𝐼                     (2) 

 

In the PCS sub layer 64B/66B encoding is used so 66 bits are stored in a single FIFO 

location. Therefore in order to accommodate 1897.49 UIs, 

1897.49

66
= 28.7498 = 29 locations (3) 

 

29 FIFO locations are required. This means alignment markers at the four serial lanes 

can be misaligned by a maximum of 29 FIFO locations/ FIFO write pointers. 

Therefore the minimum FIFO depth required by the lane alignment is 29. Hence we 

can implement a bank of four FIFOs one per each lane, with a depth of 32 locations. 

 

2.2.3  Clock rate compensation in worst case scenario 

The worst case scenario is met when the data packets have their maximum size and 

back to back with minimum IPG. In addition to that, the maximum clock rate 

difference between the read and write pointers has to be considered. Maximum signal 

rate, per lane for 40GBASE-R is 10.3125 ±100 PPM [5: Clause 85.8.4], [12]. That is 

the read - write pointer difference should be in its maximum of ±100 PPM at the 

worst case operating condition. It means the read pointer clock can be +100PPM and 

the write pointer can be at -100PPM or vice versa. In both cases, the difference 

between read and write pointers is 200PPM in its worst scenario. 200 PPM implies 
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200 pointer differences per 1000 000 clocks. Therefore one read write clock 

difference is anticipated for 5000 clock cycles. In order to compensate for this 

potential single clock difference, there should be at least one IPG for every 5000 

clock cycles. 

Therefore maximum data packet may span across 5000 clock cycles. Each data 

packet starts with eight bit start character. Data packet will be terminated with 

terminator character and idle characters will follow. Hence the maximum amount of 

effective data that can be supported, while conforming the requirements of maximum 

clock rate difference is 39.994 Kbytes (Figure 2.7Figure 2.1). 

 

 

 

 

 

 

Figure 2.7: Formation of maximum data packet 
 

Idle control characters may be added / deleted by PCS to adapt between clock rates. 

/I/ insertion / deletion shall occur in groups of eight [5: Clause 82.2.3.6]. As per the 

specification minimum IPG is 96 bits or 12 octets [5: Clause 4.4.2]. Minimum IPG 

guarantee full column of /I/ characters for only one lane per IPG. Therefore clock 

rate compensation needed to be carried out at the upper level of the receiver, after all 

the lanes are aggregated. 

For the clock rate compensation purposes a separate FIFO will be implemented at the 

upper level of the receiver model. The width of this FIFO should be 66 bit in order to 

accommodate 64B/66B encoded data. One pointer location is required for the cross-

domain synchronization of the FIFO control signals. Therefore it can be concluded 

that the minimum of two FIFO locations are sufficient between the add request of the 

Idle /I/ code group in IPG and the FIFO empty condition. Similarly the minimum of 

two FIFO locations are sufficient between the delete request of the /I/ code group in 

IPG and the FIFO overflow condition. For uninterrupted free running of data we are 

proposing a FIFO depth of eight locations. 

Clk1: S0 D1 D2 D3 D4 D5 D6 D7 

Clk2- Clk4999:8 data bytes on each 

Clk5000-D0 D1 D2 T3 I4 I5 I6 I7 

7 + (8 * 4998) + 3 = 39.994 Kbytes 
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2.2.4  Optimization of receiver FIFO parameters for 40GBASE-R PCS sub 

layer 

Potential optimization for the 40GBASE-R PCS sub layer receiver FIFO can be 

summarized as follows. The proposed FIFO scheme consists of FIFOs at two levels 

of the receiver model. A FIFO bank consists of four FIFOs with the width of 66 bits 

is required by the design for deskew at each lane. The FIFO depth of 32 is sufficient 

to handle lane misalignment introduced by skew parameters. A separate FIFO 

employed at the upper level of the receiver model is used for clock rate 

compensation. Here again width of 66 is needed to accommodate 64B/66B encoded 

data. Depth of eight locations is sufficient to handle ±100 PPM clock rate difference. 

In both cases received data will be stored in to the FIFO using the recovered clock 

from the serial lane; that is the write pointer is controlled by the recovered clock. 

Local system clock at the receiver is used to read stored data, hence to control the 

read pointer. The read and write pointers of the FIFO operate in round robin method.  

The following two rules, same as in the case of 10G are adhered with the clock rate 

compensation FIFO with depth of 8 locations. 

1. The insert request to add a /I/ code group should be raised, whenever the 

read-write pointer difference is lesser than three. FIFO empty condition is 

met when the current pointer difference is zero and the previous pointer 

difference is one. 

2. The delete request to remove /I/ code group should be raised whenever the 

pointer difference is exceeding five. When the previous pointer difference is 

seven and the current pointer difference is zero the FIFO overflow condition 

is met.  

The FIFO is in free run condition when the read-write pointer difference is between 

three and five. 
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3.   MODELING PCS SUB LAYER OF 40GBASE-R SYSTEMS 

This chapter describes the proposed implementation for 40GBASE-R PCS sub 

layer. Transmitter and receiver models that have been implemented for the 

simulation are detailed separately in the forthcoming sections. 

3.1  40GBASE-R PCS Sub Layer Modeling 

In order to verify proper functionality of the FIFO design 2.2.4 , 40GBASE-R PCS 

sub layer transmitter and receiver models conforming IEEE 802.3ba specification 

need to be identified and implemented. Also we have to recognize the proper 

location in the receiver model in which the FIFO scheme should be inserted [15]. 

3.2  40GBASE-R PCS Sub Layer Transmitter 

     Figure 3.1 depicts the adopted transmitter model for 40GBASE-R PCS sub layer. 

The transmitter was modeled referring and conforming IEEE802.3, clause 82 [5]. 

PCS sub layer transmitter, transmits data received from the XLGMII interface to the 

PMA sub layer (refer Figure 2.4 for the positioning of different sub layers of the 40G 

systems).  The communication between XLGMII and PCS during transmit process is 

done using eight octet wide data path (TXD <63:0>) and by the transmit control 

signals (TXC<7:0>) delimiting data octets. The other end communication with the 

PMA is carried out using four encoded serial bit streams. The different blocks within 

the transmitter are used to provide the packet mapping between XLGMII format and 

PMA service interface format. 

The transmit clock (TX_CLK) which provides timing reference for the transfer of 

TXC and TXD signals should be one-sixty-fourth of the MAC transmit data rate [5: 

Clause 81.3.1.1] which is 40 Gb/s for 40G [5: Clause 80.1.2]. 

Hence, 

𝑇𝑋𝐶𝐿𝐾 =
40 𝐺

64
= 625 𝑀𝐻𝑧              (4) 
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     Figure 3.1: 40GBASE-R Transmitter Model 

 

3.2.1  64B/66B Encoder [13] 

The encoder maps one XLGMII data transfer, that is TXD<63:0> and TXC<7:0> to 

one 66 bit block (Figure 3.2). The sync header field of the 66 bit block is derived 

based on corresponding TXC signal. Depending on the content, remaining portion of 

the 66bit block is derived based on TXD, TXC or both ( 

   Figure 2.6). 
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Figure 3.2: Encoder Output 

Source: Clause 82.2.3.2 [5] 

 

3.2.2  Scrambler [5: Clause 82.2.5, 14] 

The pay load of the 66 bit block (bit 2: bit 65) is scrambled with a self synchronizing 

scrambler. The sync header bypasses the scrambler. The scrambler polynomial is 

given by, 

   𝐺(𝑥) = 1 + 𝑥39 + 𝑥58  (5) 

 

The scrambler implementation is shown in Figure 3.3. 

 

Figure 3.3: Scarambler 

Source: Clause 49.2.6 [5]  

 

3.2.3  Block distribution [5: Clause 82.2.6] 

Block distribution allows support of multiple physical lanes. 66 bit data blocks 

resulted after encoding and scrambling processes are distributed on four lanes by the 
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40GBASE-R PCS. This is a round robin distribution, one block at a time from the 

lowest PCS lane to the highest as depicted in Figure 3.4. 

 

Figure 3.4: PCS Block Distribution 

Source: Clause 82.2.6 [5] 

 

In the case of 40GBASE-R systems number of lanes is four so n is equal to three. 66 

bit blocks are input to the distributor at a rate of 625MHz. Therefore the resulting 

serial lanes will have, 

625 𝑀 4⁄ = 156.25 𝑀   (6) 

 

156.25 MHz of 66 bit blocks at each of the serial lanes.  

 

3.2.4  Alignment marker insertion [5: Clause 82.2.7] 

Alignment marker is an especially defined 66 bit block with sync header being ‘10’ 

that for a control block (Figure 3.5). Since insertion process takes place after 

encoding and scrambling process, at the transmitter PCS alignment markers are 

neither encoded nor scrambled. The content of the alignment marker block depends 

on the PCS lane number. M0, M1, M2 are defined specifically for each PCS lane. 

M4, M5 and M6 are bit wise inversion of M0, M1 and M2 respectively. Method of 

calculating bit interleaved parity (BIP3) filed is detailed in Clause 82.2.8 [5]. BIP7 is 

the inversion of BIP3. This field is used as a fast measure of bit error ratio of a given 

PCS lane.  
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Figure 3.5: Alignment marker format 

Source: Clause 82.2.7 [5] 

 

Alignment Markers are added to each PCS lane in order to support deskew and 

reordering PCS lanes at the receive PCS. These are inserted to all PCS lanes at the 

same time and periodically (       Figure 3.6 and     Figure 3.7). On each lane, after 

every 16383 66 bit blocks, the lane specific alignment marker block is inserted. 

 

 

       Figure 3.6: Alignment Marker Insertion 

       Source: Clause 82.2.7 [5]  

  

 

 

    Figure 3.7: Alignment Marker insertion period 

    Source: Clause 82.2.7 [5]  

 

As shown in      Figure 3.1 alignment marker insertion will be carried out 

independently for each PCS lane. 
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3.2.5  Serializer 

Transmitter serializes the 66 bit blocks prior transmitting. Serializer is having input 

of 66 bit blocks at the rate of 156.25 MHz. 

 

156.25 𝑀 ∗ 66 = 10.3125 𝐺                 (7) 

 

Hence the serializer is outputting bits at a rate of 10.3125 GHz. Our model requires 

one module of this type per each lane (     Figure 3.1).  

 

3.3  40GBASE-R PCS Sub Layer Receiver 

Adopted Receiver implementation is illustrated in                              Figure 3.8. 

Receiver PCS decodes the serial data stream received from PMA sub layer to 

produce RXD and RXC signals to be transmitted to XLGMII interface.  

3.3.1  Deserializer 

Deserializer block group the incoming bit stream to generate 66 bit parallel data. 

10.3125 GHz serialize clock will produce 66 bit blocks at a rate of 156.25 MHz As                             

Figure 3.8 shows one module per each lane is implemented separately. 

3.3.2  Block synchronization [5: Clause 82.2.11] 

Block synchronization process monitors the incoming data to identify block lock 

condition. It waits for 66 valid sync headers to obtain the block lock state. A module 

operating at 156.25 MHz at each lane is required. 

3.3.3  Alignment marker lock [5: Clause 82.2.12] 

Alignment marker lock waits for two valid alignment markers to obtain the lock 

state. The process is started only after the block lock state is achieved on a particular 

PCS lane. In alignment marker lock stage the PCS lane number received can be 

identified, due to the fact that alignment makers are lane specific. 
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                             Figure 3.8: 40GBASE-R Receiver Model 

 

3.3.4  Lane deskew FIFO 

We are introducing the lane deskew FIFO at this stage of the receiver PCS. FIFO per 

each lane is implemented with the identified parameter values. Optimization for 
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parameters, width of 66 bits and depth of 32 locations are derived such that the 

maximum skew for 40GBASE-R as specified in Error! Reference source not 

found. is tolerated. FIFO read and write operations are carried out in 156.25 MHz 

lane clocks. 

3.3.5  Lane reorder [5: Clause 82.2.13] 

PCS reorders the received PCS lanes according to the PCS lane number. This was 

identified at the alignment marker lock stage. 

3.3.6  Alignment marker removal [5: Clause 82.2.14] 

In this stage PCS lanes are multiplexed together in the proper order to obtain the 

original block stream that was at the transmitter. Alignment markers are deleted from 

the block stream since they are not needed further. The BIP filed in the alignment 

markers can be monitored to obtain error ratio related parameters.  

3.3.7  Clock rate compensation FIFO 

As discussed in section 2.2.3 clock rate compensation is carried out at the upper level 

of receiver model. Addition/deletion of eight consecutive /I/ code blocks (a full 

column of /I/s) is done in order to compensate clock rate differences. Hence the FIFO 

should be implemented after the data from the four lanes get aggregated. Aggregated 

data, with the capability of addition/deletion of full column of /I/s is formed after the 

lane reorder and alignment removal stages. So the clock rate compensation FIFO is 

positioned at this stage of the receiver model. In order to accommodate encoded data 

the width the FIFO should be 66 bits and as deduced by the analysis in section 2.2.3 

the depth of eight is sufficient. 

3.3.8  Descrambler [5: Clause 82.2.15] 

Descrambler processes the pay load of the 66 bit block (bit 2 to bit 65) to reverse the 

effect of the scrambler. The descrambler polynomial is identical to the scrambler 

polynomial. 

𝐺(𝑥) = 1 + 𝑥39 +  𝑥58              (8)  

 

Descrambler implementation is shown in    Figure 3.9. 
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   Figure 3.9: Descrambler 

   Source: Clause 49.2.10 [5] 

3.3.9  Decoder [15] 

Decoder uses the sync header two bits from the incoming 66 bit block to determine 

the RXC<7:0>. Depending on the control block, to determine the corresponding 

RXC signal decoder may need to consider the data payload as well. One 66 bit block 

will be mapped into one XLGMII transfer, which is RXC<7:0> and RXD<63:0> 

(Figure 3.10). 

 

Figure 3.10: Decoder Output 

Source: Clause 82.2.3.2 [5] 

 

It should be noted that the optimized FIFO parameters suggested in 2.2.4 are valid 

for any implementation of 40GBASE-R PCS sub layer conforming IEEE802.3ba 

specification. The transmitter and receiver models described in 3.2 and 3.3 are only 

one possibility of such system models introduced for the purpose of functional 

verification of the suggested design. In other words, As far as it is abided by the 

IEEE802.3ba standard, PCS sub layer modeling does not put any limitations on the 

proposed FIFO design. 
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4.   SIMULATION, RESULTS AND ACHIEVEMENTS 

This chapter introduces the simulation criteria used for functional verification of 

the analysis output discussed in the previous chapter. In the latter part of the 

discussion, the simulation results will be analyzed to verify the functionality of the 

proposed designs. Discussion flows in twofold manner separately for 10GABSE-X 

and 40GBASE-R. 

4.1  Simulation Environment 

Both 10GBASE-X and 40GBASE-R systems are modeled using Verilog HDL. These 

systems were simulated using ModelSim advanced simulation and debugging tool 

from Mentor Graphics Corporation. 

Two scenarios FIFO Empty and FIFO Full for both systems were simulated. FIFO 

Empty situation is viable when FIFO read clock is faster than FIFO write clock. 

FIFO can become full when FIFO write clock is faster than the FIFO read clock. 

Both these conditions are undesirable for the proper operation of the systems. 

Therefore operations at these situations were monitored. 

At FIFO Empty potential scenario the signals of interest to be monitored were, Read 

– Write pointer difference, FIFO Empty Flag and the Insert Request. Read – Write 

pointer difference, FIFO Full Flag and the Delete Request were the desired signals at 

the FIFO Full viable scenario. 

The signals were captured using inbuilt “Wave Window” utility of ModelSim. 

4.2  10GBASE-X Simulation and Results 

For 10GBASE-X systems, data packets of size 10 Kbytes and 312.5 MHz ±200 PPM 

clock rate difference were used. FIFOs of 10 bit width and 8 depth locations were 

modeled. Desired wave forms were monitored at both FIFO Full and FIFO Empty 

viable situations. 

4.2.1  Waveforms captured for FIFO Full viable situation 

Figure 4.1 depicts FIFO Full viable simulation results. Situation is viable when Write 

clock is faster than the Read clock. As per the captured signals shown, whenever the 

pointer difference goes beyond five, the Delete Request is set high, otherwise it 

remains low. When the Delete Request is high, an existing ||R|| code group in the IPG 
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is removed, so the Read – Write pointer difference decreases avoiding FIFO being 

Full. Throughout the whole simulation FIFO Full signal remains low; indicating 

FIFO was not full all the time. So the proper operation is achieved. 

 

 

Figure 4.1: Signals captured from ModelSim Wave simulation in a FIFO Full 

condition viable scenario for 10GBASE-X 

 

4.2.2  Waveforms captured for FIFO Empty viable situation 

 

 

Figure 4.2: Signals captured from ModelSim Wave simulation in a FIFO Empty 

condition viable scenario for 10 GBASE-X 

 

Captured waveforms for FIFO Empty viable situation is shown in  

Figure 4.2. As per the waveforms whenever the pointer difference goes below three, 

the Insert Request is set high, otherwise it remains low. When the Insert Request is 

high, a ||R|| code group is added to IPG, so the Read – Write pointer difference 

increases avoiding FIFO being Empty. Throughout the whole simulation FIFO 

Empty signal remains low; indicating FIFO was not empty all the time. So the proper 

operation is achieved. 

 

We have published the IEEE paper, “FIFO Design for IEEE 802.3 Standard 

10GBase-X PCS and XGXS Sublayers” (ISBN: 978-1-4673-5653-4) related to this 

piece of work in 4th International Conference on Intelligent Systems, Modelling and 

Simulation,2013 [11]. 
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4.3  40GBASE-R Simulation and Results 

For 40GBASE-R systems, data packets of size 40 Kbytes (inclusive of 39.994Kbytes 

of effective data) were simulated with 625 MHz ±100 PPM clock rate difference 

between receiver and transmitter clocks. A bank of four FIFOs of 66 bit width and 32 

depth locations were modeled as one per each lane for lane deskew purpose. A 

separate FIFO with width of 66 bits and depth of eight locations was implemented 

for clock rate compensation. Desired wave forms were monitored at both FIFO Full 

and FIFO Empty viable situations. 

4.3.1  FIFO Full viable situation 

This situation is viable when Write clock is faster than the Read clock. The results 

obtained are shown in Figure 4.3. 

 

 

Figure 4.3: Signals captured from ModelSim Wave simulation in a FIFO Full 

condition viable scenario for 40GBASE-R 

 

Whenever the pointer difference goes beyond five, the Delete Request is set high, 

otherwise it remains low. When Delete Request is high, an existing /I/ idle code 

group in the IPG is removed, so the Read – Write pointer difference decreases 

avoiding FIFO being Full. As can be seen from the captured waveforms in Figure 

4.3, FIFO Full signal remains low throughout simulation indicating FIFO did not 

meet the full condition. Hence the proper functionality is achieved. 

4.3.2  FIFO Empty viable situation 

When the Read clock is faster than the Write clock there is a possibility for the FIFO 

to be empty. Whenever the Read – Write pointer difference goes below three, the 

Insert Request is set high, otherwise it remains low. Figure 4.4 shows the captured 

waveforms of desired signals. 
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Figure 4.4: Signals captured from ModelSim Wave simulation in a FIFO Empty 

condition viable scenario for 40GBASE-R 

 

When the Insert Request is high, a /I/ code group is added to IPG, so the Read – 

Write pointer difference increases avoiding FIFO being Empty. As seen from Figure 

4.4, throughout the simulation FIFO Empty flag remains at low condition. This 

indicates that the FIFO did not meet the empty condition. Hence the proper operation 

is verified.  

 

The 40SBASE-R PCS sub layer transmitter and receiver described respectively in 

sections 3.2 and 3.3  were used to model and simulate the proposed FIFO design for 

40G. This optimization of FIFO parameters is valid and applicable for any other 

40GBASE-R PCS sub layer receiver implemented adhering to IEEE802.3ba 

specification.  

 

The IEEE paper “Optimization of Receiver FIFO for IEEE802.3ba 40GBASE PCS 

Sub Layer” (PID: 1570228452) will be published in 30th International Conference on 

Information Networking, 2016 regarding this work on 40GBASE PCS sub layer 

receiver. 
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5.   CONCLUSIONS AND FUTURE WORKS 

Chapter 5 Conclusions and Future Works is presented under two parts, 

conclusions and future works. Conclusions winds up the facts that can be 

formulated with the current results. Latter subsection future works suggests for 

potential improvements.  

5.1  Discussion and Conclusions 

5.1.1  For 10 GBASE-X 

For 10 GBASE-X systems, a FIFO bank consists of four FIFOs with the width of 10 

bits is required by the design. The FIFO depth of eight is sufficient to handle ±100 

PPM clock rate difference. With these parameters insert request to add ||R|| code 

group should be raised whenever the read-write pointer difference is lesser than 

three. When read-write pointer difference is greater than five, delete request should 

be raised to remove one existing ||R|| code group. The FIFO is on a free run when 

read-write pointer difference is between three and five. This design can also support 

jumbo data packets of 9K bytes. This scheme was simulated and proper functionality 

is verified. 

In general, the XGXS and PCS sub layer ASIC designs for 10GBASE-X FIFO banks 

use 32 depth and 10bit wide FIFOs. A bank of four such FIFOs requires 1280 

(32*10*4) registers (or RAM bits). The proposed FIFO size reduces the requirement 

to 320 (8*10*4) registers (or RAM bits). It saves the power and silicon area of 960 

registers (or RAM bits) in the ASIC design, which is a notable contribution. 

5.1.2  For 40 GBASE-R 

The optimization for 40GBASE-R systems, proposed and verified by this research 

consists of a FIFO scheme which is having FIFOs at two levels of the PCS receiver 

model. For deskew purpose, a FIFO bank consists of four FIFOs with the width of 66 

bits is required at each individual lane. This is the constraint driven by the design 

specifications; four serial lanes of data at the physical layer and use of 64B/66B 

encoding. Depth of 32 can tolerate the maximum possible skew specified by the 

standard.  
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The scheme employs another FIFO at the upper level of the receiver model to 

compensate for clock rate differences, with the width of 66 bits. As per our analysis 

and simulation results a FIFO depth of 8 is sufficient to handle ±100 PPM clock rate 

difference. With these parameters insert request to add a /I/ code group should be 

raised, whenever the read-write pointer difference is lesser than three. Whenever the 

pointer difference is exceeding five, delete request should be raised to remove an 

existing /I/ code group. The proposed design was simulated and verified. 

Also as per analysis in 2.2.3  this design can support super jumbo data packets up to 

39.994 Kbytes of data. In order for the convenient integration with the upper layers 

of  IEEE802.3 it is advisable to implement this maximum super jumbo data packet in 

two packets; as a packet of 32 Kbytes followed by a secondary packet consists of 

remaining 7.994 bytes. Further even though there is no formal definition for super 

jumbo packets and they are not standardized in IEEE std 802.3, in order to maintain 

same bit error rate accuracy, extended frame sizes should not extend beyond 11455 

bytes [20], [21]. Both cases suggest for packet sizes lower than the analyzed 

maximum, thus allow IPG becoming available before 5000 clock cycle span. So in 

all these situations proposed FIFO scheme and parameters are capable of handling 

the maximum clock rate difference specified by the standard. 

The analysis as well as the FIFO scheme proposed by this research is applicable and 

valid for any other implementation of 40GBASE-R systems conforming 

IEEE802.3ba standard. The suggested and verified design optimization may reduces 

the number of registers (or RAM bits) required. This may lead to significant savings 

in terms of power and silicon area of ASIC design. 

5.2  Recommendation for Future Work 

Currently the proposed FIFO designs for both 10GBASE-X and 40GBASE-R are 

simulated and functionality is verified based on the simulation results. It is 

recommended to emulate the systems in real hardware, such as on a FPGA (Field 

programmable Gate Array) board and verify the proper behavior on hardware.  

Further, analysis and verification of optimized FIFO design parameters for 

100GBASE systems can be addressed. 
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Appendix A: Verilog test bench for 10GBASE-X PCS Sublayer FIFO design 

// -----------------------------------------------------------------

// This is the implementation of TestBench for Single Asynchronous 

FIFO 

// Note: FIFO FULL :-Wr_Clk>Rd_Clk; Wr_Clk T = 3199 

//       FIFO EMPTY :- Rd Clk>Wr_Clk; Wr_Clk T = 3200 

// ----------------------------------------------------------------- 

// timescale unit/precision 

`timescale 1ps / 1ps // each unit is 1 ps,& simulation has 1 ps 

precision 

 

moduleTestLaneFIFO; 

 

parameterFIFO_width = 10; // 10 bits 

parameterADDR_bits = 3; // 3 bits 

 

// stimuli signal generation 

regtstWr_Clock, tstRd_Clock, tstFIFOReset; 

wiretstFIFO_Full, tstFIFO_Empty; 

wiretstInsert_Req, tstDelete_Req; 

wire [2:0] tstPtrDiff; 

 

reg [FIFO_width-1:0] tstWrData; // FIFO Wirte In data 

reg [31:0] TestData; 

reg [11:0] ClkCounter; 

 

wire [FIFO_width-1:0] tstDataOut; 

wire [FIFO_width-1:0] tstNxtRdData; 

wire [(ADDR_bits -1):0] tstFIFO_WrPtr; 

wire [(ADDR_bits -1):0] tstFIFO_RdPtr; 

wire [(ADDR_bits -1):0] tstFIFO_NxtRdPtr; 

wire [(ADDR_bits -1):0] tstCrntWrPtrGray; 

wire [(ADDR_bits -1):0] tstCrntRdPtrGray; 

wire [(ADDR_bits -1):0] tstNxtRdPtrGray; 

wire [(ADDR_bits -1):0] tstNxtNxtRdPtrGray; 

wire [(ADDR_bits -1):0] tstSyncdWrPtr; 

wiretstReadEn; 

wire [2:0] tstCounter; 

// UUT instantation 

 

LaneFIFOUUT( 

  .Wr_Clock(tstWr_Clock), 

  .Rd_Clock(tstRd_Clock),  

  .FIFOReset(tstFIFOReset), 

  .CrntWrData(tstWrData), 

  .InsertReq(tstInsert_Req), 

  .DeleteReq(tstDelete_Req), 

  .CrntWrPtr(tstFIFO_WrPtr), 

  .CrntRdPtr(tstFIFO_RdPtr), 

  .NxtRdPtr(tstFIFO_NxtRdPtr), 

  .PtrDiff(tstPtrDiff), 

  .FIFO_Full(tstFIFO_Full), 

  .FIFO_Empty(tstFIFO_Empty), 

  // Testing purpose only 

  ///  TestClkCounter, 

  .CrntRdData(tstDataOut), 

  .NxtRdData(tstNxtRdData), 
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  .CrntWrPtrGray(tstCrntWrPtrGray), 

  .CrntRdPtrGray(tstCrntRdPtrGray), 

  .NxtRdPtrGray(tstNxtRdPtrGray), 

  .NxtNxtRdPtrGray(tstNxtNxtRdPtrGray), 

  .SyncWrPtr(tstSyncdWrPtr), 

  .ReadEn(tstReadEn), 

  .Counter(tstCounter) 

 );   

 

// Define characters 

`defineStartChar 10'b1101101000 // K27.7 

`defineTerminateChar 10'b1011101000 // K29.7 

`defineCharA 10'b0011110011 // K28.3 

`defineCharK 10'b0011111010 // K28.5 

`defineCharR 10'b0011110100 // K28.0 

 

`defineWrClkCycles 12'd2500 // 10k / 4 = 2500 

 

  // --------------------------------------------------------------- 

  // Initialization 

  // ---------------------------------------------------------------  

initial 

begin 

tstFIFOReset = 1'b0; // reset FIFO 

    #16010 tstFIFOReset = 1'b1; 

end 

 

  // --------------------------------------------------------------- 

  // Clock signal generation 

  // ---------------------------------------------------------------  

  /* Notes: 

   FIFO_FULL & Delete request condition being testing 

tstWr_Clock: 312.5 MHz + 100 ppm => 312531.25 kHz => 3199.68 ps 

tstRd_Clock: 312.5 Mhz - 100 ppm => 312468.75 kHz => 3200.3 ps 

 

tstWr_Clock: 312.5 MHz + 200 ppm => 312562.5 kHz => 3199.3 ps 

tstRd_Clock: 312.5 Mhz - 200 ppm => 312437.5 kHz => 3200.6 ps 

  */ 

 

  // Write pointer to be derived on received/recovered clock 

initial // Clock generator 

begin 

tstWr_Clock = 1'b1; 

forever #1599 tstWr_Clock = !tstWr_Clock; // invert every 3199.68 / 

2 = 1599.84ps 

end 

 

  // Read pointer to be derived on the local clock 

initial // Clock generator 

begin 

tstRd_Clock = 1'b1; 

forever #1600 tstRd_Clock = !tstRd_Clock; // invert every 3200.3 / 2 

= 1600.15ps 

end 

 

  // ---------------------------------------------------------------  

  // Data packet generation 

  // ---------------------------------------------------------------  
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always @ (posedgetstWr_Clock or negedgetstFIFOReset) 

if (!tstFIFOReset) 

begin 

ClkCounter = 0; 

end 

else 

begin 

if(ClkCounter>= `WrClkCycles) 

ClkCounter = 1; 

else 

ClkCounter = ClkCounter + 1; 

end 

 

  //always @(ClkCounter>= 0) // start character 

always @ (posedgetstWr_Clock or negedgetstFIFOReset) 

if (!tstFIFOReset) 

begin 

tstWrData = `CharA; // idle 

TestData = 32'b0; 

end 

else 

begin 

TestData = $random; 

if(ClkCounter == 1)   

tstWrData = `StartChar; 

else if(ClkCounter == (`WrClkCycles - 3)) // 2497 = T 

tstWrData = `TerminateChar; 

else if(ClkCounter == (`WrClkCycles - 2)) // 2498 = A 

tstWrData = `CharA; 

else if(ClkCounter == (`WrClkCycles - 1)) // 2499 = R is chosen as 

the second I following T. 

tstWrData = `CharR; 

else if(ClkCounter == `WrClkCycles) // 2500 = K 

tstWrData = `CharK; 

else 

        // TxData = TestData[(Lane0FIFO_width - 1):0];   

tstWrData = TestData[(FIFO_width - 1):0];    

end 

// --------------------------------------------------------------- 

 

// --------------------------------------------------------------- 

initial 

#81_000_000 $stop; 

// ---------------------------------------------------------------- 

endmodule  
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Appendix B: Verilog testbench for 40GBASE-R PCS sub layer Model 
 

// ----------------------------------------------------------- 

// File Name: TestFourtyG_PCS.v 

// Description: This is the implementation of TestBench for 40G 

transmitter 

// Input: tstPCSReset - Active Low Reset 

// Output:  

// Notes:  

// TODO:  

// ----------------------------------------------------------- 

 

// timescale unit/precision 

`timescale 1ps / 1ps // each unit is 1 ps, & the simulation has 1 ps 

precision 

 

module TestFourtyG_PCS; 

 

reg tstTxClock, tstPCSReset, tstPCSEn, tstRxClock; 

reg tstSerialLaneClk, tstSerialLaneWrClk, tstSerialLaneRdClk, 

NxtSerialLaneWrClk, NxtSerialLaneRdClk; 

reg [14:0] SerialClkCntr; 

reg [14:0] SerialClkCntrNxt; 

reg tstLaneWrClk, tstLaneRdClk, nxtLaneWrClk, nxtLaneRdClk; 

reg [63:0] tstTxData; 

reg [7:0] tstTxCtrl; 

 

wire [63:0] tstRxData; 

wire [7:0] tstRxCtrl;  

wire tstRxRdy, tstTxRdy; 

 

 

`define WrClkCycles 13'd5001 

parameter TxClkPeriodbyTwo = 10'd799; 

parameter RXClkPeriodbyTwo = 10'd800; 

parameter SerialLaneWrClkPeriodbyTwo = 6'd48; 

parameter SerialLaneRdClkPeriodbyTwo = 6'd48; 

 

parameter BlockType_S = 8'h78; // PCS /S/ = 0x78 

parameter BlockType_T0 = 8'h87; // PCS /T0/ = 0x87  

parameter BlockType_T1 = 8'h99;  

parameter BlockType_T2 = 8'hAA;   

parameter BlockType_T3 = 8'hB4;  

parameter BlockType_T4 = 8'hCC;  

parameter BlockType_T5 = 8'hD2;  

parameter BlockType_T6 = 8'hE1; 

parameter BlockType_T7 = 8'hFF; 

 

reg [63:0] TestData; 

reg [12:0] ClkCounter;  

reg [7:0] CkEdgeCounterTx; 

reg [7:0] CkEdgeCounterTxNxt; 

reg [7:0] CkEdgeCounterRx; 

reg [7:0] CkEdgeCounterRxNxt; 

 

integer i; 
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// ----------------------------------------------------------- 

// UUT Instantation 

// ----------------------------------------------------------- 

FourtyG_PCS UUT_PCS( 

 .TxClock(tstTxClock), //   input TxClock, 

 .SerialLaneWrClk(tstSerialLaneWrClk), 

 .LaneWrClk(tstLaneWrClk), 

 .LaneRdClk(tstLaneRdClk), 

 .TxData(tstTxData), //   input [63:0] TxData, 

 .TxCtrl(tstTxCtrl), //   input [7:0] TxCtrl, 

 .PCSReset(tstPCSReset), //   input PCSReset, 

 .PCSEn(tstPCSEn), //   input PCSEn, 

 .RxClock(tstRxClock), //   input RxClock, 

 .SerialLaneRdClk(tstSerialLaneRdClk), 

 .RxData(tstRxData), //   output [63:0] RxData, 

 .RxCtrl(tstRxCtrl), //   output [7:0] RxCtrl 

 .TxRdy(tstTxRdy), //  output TxRdy, 

 .RxRdy(tstRxRdy) // output RxRdy 

 

 ); 

  

// ----------------------------------------------------------- 

// Clock signal generation 

// Serial Lane clock: 10.3125 G => 96.9697 ps => T/2 = 48 ps 

// tstSerialLaneClk = 24 ps is used to obtain serial lane Rd Wr 

//                   clocks of T/2 = 48 ps with =/- 100 ppm 

// ----------------------------------------------------------- 

 initial // Clock Generator  

  begin       

    tstSerialLaneClk = 1'b0; 

    forever #24 tstSerialLaneClk = !tstSerialLaneClk; // invert 

every (1/10.3125) / 4 = 24.2424  

  end 

 

// ----------------------------------------------------------- 

// Clock signal generation 

// Serial Lane clock: 10.3125 G => 96.9697 ps 

// 100 ppm => 100 for 10^6 => 1 for 10 000 clks 

// stop the 10001 clk -> slower clk 

// having the 10001 as a normal clock -> faster clk   

// tstSerialLaneWrClk(47) > tstSerialLaneRdClk(49) => FIFO_FULL 

// tstSerialLaneWrClk(49) < tstSerialLaneRdClk(47) => FIFO_EMPTY 

// Generated period of both tstSerialLaneWrClk & tstSerialLaneWrClk 

are 96 ps 

// Expected period of both tstSerialLaneWrClk & tstSerialLaneWrClk 

are 96.9697 ps 

// ----------------------------------------------------------- 

initial 

  begin 

    tstSerialLaneWrClk = 1'b0; 

    tstSerialLaneRdClk = 1'b0; 

    SerialClkCntr = 15'd0; 

  end 

 

always @(*) // Combinational logic 

  begin 

    if (SerialClkCntr >= 15'd20001) // counts 0 : 20001 

      SerialClkCntrNxt <= 15'd0; 
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    else 

      SerialClkCntrNxt <= #1 SerialClkCntr + 15'd1; 

  end 

always @ (posedge tstSerialLaneClk) 

  begin 

    SerialClkCntr <= #1 SerialClkCntrNxt; 

  end 

 

always @ (posedge tstSerialLaneClk)  

begin 

  if (SerialClkCntr >= 15'd20000) 

    begin 

      // Delete req Assert: FIFO Full possible 

      tstSerialLaneRdClk <= #1 1'b0; // slow clk 

      tstSerialLaneWrClk <= #1 ~tstSerialLaneWrClk; // fast clk 

//      // Insert req Assert: FIFO Empty possible 

//      tstSerialLaneWrClk <= #1 1'b0; // slow clk 

//      tstSerialLaneRdClk <= #1 ~tstSerialLaneRdClk; // fast clk 

    end 

  else 

    begin 

      tstSerialLaneWrClk <= #1 !tstSerialLaneWrClk; 

      tstSerialLaneRdClk <= #1 !tstSerialLaneRdClk; 

  end       

end 

 

// ----------------------------------------------------------- 

// Clock Signal Generation: Lane Parallel input/output clock 

// tstSerialLaneWrClk /66 = tstLaneWrClk; tstLaneWrClk * 4 = 

tstTxClock 

// clock: 156.25 M: period 6336 ps(expected 6400 ps) 

//        When crossing boundaaries having a diff of 96 ps  6330ps : 

6432ps 

// ----------------------------------------------------------- 

initial 

  begin 

    tstLaneWrClk = 1'b0; 

    CkEdgeCounterTx = 7'b0000000; 

    tstLaneRdClk = 1'b0; 

    CkEdgeCounterRx = 7'b0000000; 

  end 

// Tx parallel clock generation   

always @ (posedge tstSerialLaneWrClk) 

  begin 

    tstLaneWrClk <= #5 nxtLaneWrClk; 

  end 

 

always @ (posedge tstSerialLaneWrClk) 

  begin 

    CkEdgeCounterTx <= #1 CkEdgeCounterTxNxt; 

  end 

always @(*) // Combinational logic 

  begin 

    if (CkEdgeCounterTx >= 7'd32) 

      CkEdgeCounterTxNxt = 7'b0000000; 

    else 

      CkEdgeCounterTxNxt = #1  CkEdgeCounterTx + 7'b0000001; 

  end 
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always @(*) 

  begin 

    if (CkEdgeCounterTx >= 7'd32) 

      nxtLaneWrClk = !tstLaneWrClk; 

    else 

      nxtLaneWrClk = tstLaneWrClk; 

  end 

   

// Rx parallel clock generation 

always @ (posedge tstSerialLaneRdClk) 

  begin 

    tstLaneRdClk <= #5 nxtLaneRdClk; 

  end 

 

always @ (posedge tstSerialLaneRdClk) 

  begin 

    CkEdgeCounterRx<= #1 CkEdgeCounterRxNxt; 

  end 

always @(*) // Combinational logic 

  begin 

    if (CkEdgeCounterRx >= 7'd32) 

      CkEdgeCounterRxNxt = 7'b0000000; 

    else 

      CkEdgeCounterRxNxt = #1  CkEdgeCounterRx + 7'b0000001; 

  end 

   

always @(*) 

  begin 

    if (CkEdgeCounterRx >= 7'd32) 

      nxtLaneRdClk = !tstLaneRdClk; 

    else 

      nxtLaneRdClk = tstLaneRdClk; 

  end 

 

 

// ----------------------------------------------------------- 

// Clock signal generation 

// RX_CLK & TX_CLK 625 MHz: period = 1591ps (1600 expected) 

// Sometimes this goes for 1584: 1679 diff of 95 ps 

// ----------------------------------------------------------- 

initial  

  begin       

    tstTxClock = 1'b0; 

    tstRxClock = 1'b0; 

  end 

 

// Clock Generator Tx 

always @(posedge tstLaneWrClk)  

  begin 

   repeat (8) 

    begin 

      tstTxClock = # ((SerialLaneWrClkPeriodbyTwo * 2 * 66) / 8) 

~tstTxClock; 

    end 

  end 

 

// Clock Generator Rx 
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always @(posedge tstLaneRdClk)  

  begin 

    repeat (8) 

      begin 

      tstRxClock = # ((SerialLaneRdClkPeriodbyTwo * 2 * 66) / 8) 

~tstRxClock; 

    end 

  end 

  

  

// ----------------------------------------------------------- 

// Initialization 

// ----------------------------------------------------------- 

// Reset Signal : Reset pulse width = (2 * 1584) + 5 

initial 

  begin 

    tstPCSReset = 1'b0; // Active low reset pulse 

    @ (posedge tstLaneWrClk); 

    @ (posedge tstLaneWrClk); 

    #6 

    tstPCSReset = 1'b1; 

  end 

 // Enable signal: Enable is activated at(3 * 1584) + 25 

initial 

  begin 

    tstPCSEn = 1'b0; // not eanabled 

    @ (posedge tstLaneWrClk); 

    @ (posedge tstLaneWrClk); 

    @ (posedge tstLaneWrClk); 

    #26 

    tstPCSEn = 1'b1; 

   end 

  

// ----------------------------------------------------------- 

// Test Data Generation 

// ----------------------------------------------------------- 

always @ (posedge tstTxClock) 

  begin 

    if((tstPCSReset == 1'b0) || (!tstPCSEn) || (!tstRxRdy)) 

      begin 

        ClkCounter = 13'd0; 

      end 

    else  

      begin 

        if(ClkCounter >= `WrClkCycles) 

          ClkCounter = 13'd1; 

        else 

          ClkCounter = ClkCounter + 13'd1; 

      end 

  end 

       

// ----------------------------------------------------------- 

// Test Data Packet considerarions 

// Minimum IPG = 96 bits = 12 bytes 

// Maximum clock rate diff +/- 100 ppm => 1 clk diff for 5000 clks  

// Data Pkt :- 

//            Clk1: S0 D1 D2 D3 D4 D5 D6 D7 - Data 7 

//            Clk5000: D0 D1 D2 T  I0 I1 I2 I3 - Data 3 : 5000 clks  
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//            Clk5001: I0 I1 I2 I3 I4 I5 I6 I7  

//            Size: 7 + 3 + (8 * 4998) = 39994 Bytes 

// ----------------------------------------------------------- 

always @ (posedge tstTxClock or negedge tstPCSReset) 

begin 

 if ((tstPCSReset == 1'b0)|| (!tstPCSEn)) // Active Low Reset 

assumed 

   begin 

    TestData = {64{1'b0}}; 

    tstTxData = 

64'b00000111_00000111_00000111_00000111_00000111_00000111_00000111_0

0000111; // idle 

    tstTxCtrl = 8'b11111111; 

   end 

 else  

   begin 

    TestData = $random; 

    if (!tstRxRdy) 

      begin  

        tstTxData = 

64'b00000111_00000111_00000111_00000111_00000111_00000111_00000111_0

0000111; // idle  

        tstTxCtrl = 8'b11111111; 

      end 

    else if(ClkCounter == 1)  

      begin  

        tstTxData ={TestData[55:0],8'hFB}; // Start: SDDD DDDD 

        tstTxCtrl = 8'b00000001; 

      end 

 

    else if(ClkCounter == (`WrClkCycles - 1)) // T3: DDDT IIII 

      begin 

        tstTxData = {8'h07, 8'h07, 8'h07, 8'h07, 8'hFD, 

TestData[23:0]}; 

        tstTxCtrl = 8'b11111000; 

      end 

    else if(ClkCounter == `WrClkCycles) // I 

      begin 

        tstTxData = 

64'b00000111_00000111_00000111_00000111_00000111_00000111_00000111_0

0000111; // idle 8 octects 

        tstTxCtrl = 8'b11111111; 

      end 

  else 

      begin 

        tstTxData = TestData; 

        tstTxCtrl = 8'h00; // Data 

      end 

  end  

end   

   

// ----------------------------------------------------------- 

initial 

 #600_000_000 $stop; 

// -----------------------------------------------------------  

endmodule 
 


