COMPARISON OF SOME TECHNIQUES FOR DESIGN FLOOD ESTIMATION $\mathsf{B}\mathsf{Y}$ L.P.BATUWITAGE M.I.E.(SL) C.Eng. 624 85" UNIVERSITY OF DIBRATUWA, SRI LANDRATUWA A dissertation submitted in partial fulfilment of the requirement for the degree of Master of Engineering MEng to Applied Hydrology UM Thesis coll. 78501 Department of Civil-Engineering University of Moratuwa Sri Lanka 78501 February 1985 This dissertation has not been previously presented in whole or part, to any University or Institution for a higher degree. UOM Verified Signature L.P.Batuwitage February 1985. ## CONTENTS | Abstract | | | |----------|---|------| | Ackno | wledgement | vi i | | 1. Inti | roduction | 1 | | 1.1 | General | 1 | | 1.2 | The general engineering design process | | | | of a hydraulic structure | 3 | | 1.3 | Importance of the design flood estimation | 3 | | 1.4 | Estimation of the design flood | 4 | | 2. Me | thodology | 6 | | 2.1 | General | 6 | | 2.2 | The methods tried out for the analysis | | | | for estimation of design flood | 6 | | | 2.2.1 Rational method | 6 | | | 2.2.2 Snyder's Technique | 14 | | | 2.2.3 U.S. soil conservation service method | 22 | | | 2.2.4 Statistical method | 29 | | 3. Dat | a | 38 | | 3.1 | General | 38 | | | Selected catchments and their general | 50 | | , | characteristics | 38 | | 3.3 | | 40 | | 4. Ana | ılysis | 54 | | 4.1 | General | 54 | | 4.2 | Analysis using Rational Method | | | | 4.2.1 Computation of peak runoff taking | | | | time of concentration from | | | | Bransby - William equation | 54 | | | 4.2.2 | Computation of peak runoff taking | | |-------|----------|--|-----| | | | time of concentration from | 57 | | | 4.22 | Kirpich equation | 57 | | | 4.2.3 | Computation of peak runoff taking | | | | | time of concentration from Design of Irrigation Headworks - | | | | | Ponrajah | 58 | | 1. 2 | | The comment of the contract | | | 4.3 | | sis using Snyder's Technique | 61 | | 4.4 | _ | sis using U.S. soil conservation service | | | | metho | | 71 | | 4.5 | | tical method - Frequency Analysis | 74 | | | | General | 74 | | | 4.5.2 | Computation of Design Flood using | | | | u 5 2 | Gumbel Method | 77 | | | 4.5.3 | Computation of Design Flood using | 0.0 | | | 1. 5 1. | Log Normal Method | 80 | | | 4.5.4 | , , | 0.0 | | | | Log Pearson Type III Method | 82 | | . Res | ults | | 85 | | 5.1 | Summ | ary of the results - Design Flood | 86 | | 5.2 | Graph | ical representation of design flood | 87 | | | | | | | . Con | clusions | 5 | 99 | | Ref | erences | 5 | 102 | | App | endices | | 104 | | | i | Locations of the hydrological | | | | | stations of the catchments analysed | 105 | | i | i – xvi | Charts used for the analysis of | | | | | design flood estimation | 106 | | | xvi i | Results obtained from the Rational | | | | | method using time of concentration | | | | | from Bransby William equation | 121 | | | xviii | Results obtained from the Rational | | | | | method using time of concentration | | | | | from Kirpich equation | 132 | | xi x | Results obtained from the Rational | | |-------|---------------------------------------|---------| | | method using time of concentration | | | | from the recommendations on Ponrajah | 140 | | xx | Results from Snyder's Technique | 145 | | xxi | Results from U.S. soil conservation | | | | service method | 267 | | xxi i | Charts for the computation of first | | | | three moments - under frequency | | | | analysis | 274 | | xxiii | Results from frequency analysis - | | | | Gumbel method | 289 | | xxi v | Results from frequency analysis - | | | | Log Normal Method | 304 | | xxx | Results from frequency analysis - | | | | Log Pearson Type III Method | 311 | | xxvi | Annual flood frequency curves for the | | | | Gumbel Method | 318 | | xxvii | Annual Flood frequency curves for the | | | | Log Normal Method | 333-347 | ## ABSTRACT Sri Lanka, a country with abundant water resources, has a predominantly agriculture oriented economy. Hence, hydrological development plays an important role, not only in the vast irrigation development efforts, but also in meeting the energy requirements of the country through hydro-power. Many hydrologic design problems require simply an estimation of the peak flow rate generated by a river system under specific conditions. Several methods are available for the estimation of peak flow rate, but many of these are quite inadequate to produce results which are consistant within the accuracy required for hydrologic analysis and design. In this study several different flood estimation methods have been considered for sixteen catchments to determine their applicability to Sri Lankan catchments. A frequency analysis is also carried out for each of the catchments and their flood peaks are compared with the design floods obtained by different methods. It is observed that the findings of this thesis lead to various research areas, for further detailed studies with regard to some of the methods of analysis. ## ACKNOWLEDGEMENT Author wishes to express her sincere gratitude to all those who assisted in producing this thesis with much success. Particular mention has essentially to be made on - * Dr. Sunil Wickramasuriya of the University of Moratuwa, the course co-ordinator for the Post Graduate Course of 1982/84 as well as a Supervisor of this thesis, and whose invaluable guidence and the continuous encouragement, supported by his deep knowledge of the subject has been the hidden force behind the successful production of this thesis - * Mr. Palitha Manchanayaka, Assistant Director of the Mahaweli Authority, the other supervisor of this thesis, who had no hesitation at any instance in assisting and guiding the author, in every aspect of the thesis, with his useful experience in the field of hydrology - * Staff of the University of Moratuwa, the Chanceller, the Vice-Chanceller, the Dean of the faculty of Engineering, the Head of the Department of Civil Engineering and the other staff - * Deputy Director of the Hydrology Division of Department of Irrigation, Mr. G.T.Darmasena and the staff who assisted in collecting and processing the data - * Misses Pushpa Jayasinghe, Priyanka Peiris, Amara Senanayake, Nanda Witharama and Kanthi Gange who never showed any sign of fatigue in typing and attending to proof reading and other work with long drafts of this thesis - * Mr. A.K.Herath who assisted in collecting and compiling the data required - * All other well wishes who provided necessary courage in making this thesis a reality