POTENTIALITY OF INTRODUCING ABSORPTION CHILLER SYSTEMS TO IMPROVE THE DIESEL POWER PLANT PERFORMANCE IN SRI LANKA

MTN Albert

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

February 2015

POTENTIALITY OF INTRODUCING ABSORPTION CHILLER SYSTEMS TO IMPROVE THE DIESEL POWER PLANT PERFORMANCE IN SRI LANKA

MTN Albert

118351A University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations Thesis submitted in partial fulfillment of the requirements for the degree Master of Engineering

Department of Mechanical Engineering

University of Moratuwa Sri Lanka

February 2015

DECLARATION OF THE CANDIDATE & SUPERVISOR

I declare that this is my own work and this thesis does not incorporate without acknowledgement of any material previously submitted for a Degree or Diploma in any other university or institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my thesis in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books).

The above candidate has carried out research for the Masters under my supervision.

Signature of the supervisor:

Date:

ABSTRACT

This aims to find the potentiality of introducing absorption chiller systems to improve the diesel power plant performance in Sri Lanka. The energy efficient operation of diesel power plants is very much important for the country due to the high cost of generation of thermal electricity. Therefore waste heat of diesel power plant is utilized to run a suitable absorption chiller. The considered waste heat is mainly of exhaust and cooling water in the diesel engines of the power plant.

The performance of the power generating diesel engines is considered in two ways. That is in terms of specific fuel oil consumption (SFC) and engine deration. The SFC of the engines varies due to many factors. Since the site conditions in Sri Lanka are not in standard conditions the higher SFC and engine deration is possible. The ISO standard site conditions mean the 25°C (77°F) ambient temperature, 30% relative humidity and a model was developed to evaluate the performance of particular engines. All the temperature values in the model are given in Fahrenheit degrees (°F). It is observed that the engine SFC is low and the engine will not derate at the standard site conditions. From the model it is obvious that when the ambient temperature is 70°F (21.1°C) the engine will not derate due to the effect of humidity even though the percentage of relative humidity reaches 100. In contrast, above 133.6°F (56.4°C) ambient temperature the power plant diesel engines derate due to the effect of humidity irrespective of the value of percentage relative humidity.

The investigated model was applied to evaluate the improved performance of a diesel power plant by introducing an absorption chiller system. The building cooling load was additionally integrated to that system. Therefore it further upfifts the advantages by saving electricity of vapour compression air conditioners. mrt. ac.lk

DEDICATION

I lovingly dedicate this thesis to my family, who supported me in each & every way to make this effort a success.

ACKNOWLEDGEMENT

I take this opportunity to express my sincere thanks to Prof. Rahula A. Attalage, Deputy Vice Chancellor of University of Moratuwa, Sri Lanka as my supervisor, for his great contribution to select this topic for the research project and guidance for finding data. I would also like to express my sincere thanks to Dr. Himan Punchihewa, Course Coordinator of MEng/PG Diploma in Energy Technology (2011/12), Dept. of Mechanical Engineering, University of Moratuwa, for the encouragement and guidance given to fulfill this endeavour.

I also thank Dr. Inoka Manthilake, Senior Lecturer, Dept. of Mechanical Engineering, University of Moratuwa, and Mr. Kithsiri Gamage, Mechanical Engineer, Uthuru Janani Power Station, Ceylon Electricity Board for their fullest support shown me to collect data from their data base and guidance given me to gather details from relevant authorities.

University of Moratuwa, Sri Lanka. I would like tend in thanks Tohriends and isoffedgies specially batch mates of MEng/PG Diploma in Energy Technology (2011/12) for their enormous encouragement, knowledge and help given me to make this task successful.

At last, but not least, I would like to thank my loving wife, son and parents for their tireless support and encouragement during the course of my academic career.

CONTENT

Table	of Conte	ents		
Declaration of the candidate & Supervisor				i
Abstract				ii
Dedication				iii
Ackno	wledge	ments		iv
Conte	nt			V
List of	f Figures	8		ix
List of	f Tables			xi
List of	fabbrevi	iations		xiii
List of	f Append	dices		xiv
1.	Introdu	uction		1
	1.1	Backg	round	1
	1.2	Proble	m identification	3
	1.3	Aim a	n Uobjectives of Moratuwa, Sri Lanka.	4
	1.4	Metho	Flegtronic Theses & Dissertations	4
	ě	1.4.1	Phase 1: Literature review	4
		1.4.2	Phase 2: Development of a model	4
		1.4.3	Phase 3: Applying the model in a case study	4
2.	Diesel	engine	and auxiliary systems	5
	2.1	Diesel	engine and working principal	5
		2.1.1	Thermodynamic cycle	5
		2.1.2	Heat supplied to diesel engine	6
		2.1.3	Expected outcomes from an optimum diesel engine	6
	2.2	Engine	e auxiliary systems	7
		2.2.1	Cooling water systems	7
		2.2.2	Lube oil system	9
		2.2.3	Lube oil system parameter variations	10

		2.2.4	Fuel oil system	13
		2.2.5	Fuel oil system parameter variations	13
		2.2.6	Turbo charging system	14
		2.2.7	Results of turbo charging	14
		2.2.8	Charge air system	15
		2.2.9	Effect of charge air	15
		2.2.10	Charge air system parameter variations	16
		2.2.11	Effect of ambient temperature	16
		2.2.12	Effect of relative humidity	19
		2.2.13	Engine cooling methods	19
3.	Waste	e heat rec	covery methods	21
	3.1	Waste	heat	21
	3.2	Factors	s affecting waste heat recovery	21
	3.3	Waste	heat recovery technologies University of Moratuwa, Sri Lanka.	21
	(3.3.1	Recuperator Theses & Dissertations	21
		3.3.2	Regeneratormrt.ac.lk	22
		3.3.3	Finned tube heat exchangers/economizers	23
		3.3.4	Shell and tube heat exchangers	24
		3.3.5	Waste heat boilers	24
	3.4	Vapou	r absorption chiller systems	25
		3.4.1	Vapour absorption chiller classification	26
		3.4.2	Applications of absorption chiller systems	26
		3.4.3	Choice of refrigerant absorption pairs	27
		3.4.4	Limitations of Lithium Bromide-water and Ammonia-	
			water systems	28
		3.4.5	Operating log with parameters	30
	3.5	Waste	heat sources of diesel engine	31
		3.5.1	Quantifying the waste heat	31

		3.5.2 Measuring the waste heat	31
	3.6	Absorption chiller system applications with waste heat in	
		diesel engines	32
4.	Deve	loping a model	34
	4.1	Prioritize the parameters	34
	4.2	Specific fuel oil consumption	35
	4.3	Engine deration	37
		4.3.1 Ambient temperature	37
		4.3.2 Altitude	38
		4.3.3 Humidity	40
	4.4	Summary	47
		4.4.1 Specific fuel oil consumption at the site conditions	47
		4.4.2 Deration percentage calculation	48
		4.4.3 Flow chart of the performance evaluation University of Moratuwa, Sri Lanka.	49
	4.5	Selection of vapour absorption chiller ssertations	50
		www.lib.mrt.ac.lk	
5.	Case	study	51
	5.1	Uthuru Janani Power Station	51
	5.2	Data collection	51
		5.2.1 Instrument details	52
	5.3	Evaluating the SFC and fuel oil saving	52
	5.4	Engine deration evaluation	58
		5.4.1 Deration due to the ambient temperature effect	58
		5.4.2 Deration due to the altitude effect	63
		5.4.3 Deration due to the relative humidity effect	63
	5.5	Calculation of required cooling load	70
		5.5.1 Intake air mass flow rate	70

	5.5.2	Weight of dry air	72
	5.5.3	Cooling load required to condition the combustion air	72
	5.5.4	Cooling load required to reduce the charge air cooling	
		water inlet	75
	5.5.5	Building cooling load	76
5.6	Steam	available in the exhaust boilers	77
5.7	Energ	y in HT cooling water for vapour absorption chillers	78
5.8	Introd	ucing the vapour absorption chiller	78
	5.8.1	Net electricity consumption	81
	5.8.2	Investment and payback period calculation	81
		nd discussion	84
Reference Lis			86
Appendix A: Graphical interpretation of Table 4.2 in Mathlab software University of Moratuwa, Sri Lanka.		89	
Appendix B: Colculations of the model & Dissertations			91
Appendix C:	Scatter	r plot of measured temperature and RH points using	
	Matlah	o software	95
Appendix D:	Psychi	rometric chart enthalpy calculations	98
Appendix E:	Psychi	rometric chart cooling load calculations	99
Appendix F:	Hot wa	ater chiller performance data	100
Appendix G:	Steam	chiller performance data	101
Appendix H:	Chille	r performance data and prices	102

LIST OF FIGURES

		Page
Figure 1.1	Electricity generation by ownership 2012 & 2013 [1]	1
Figure 1.2	Electricity generation by source 2012 & 2013 [1]	1
Figure 2.1	Thermodynamic cycle [4]	5
Figure 2.2	Heat supplied to the diesel engine (Heat in Fuel)	6
Figure 2.3	Effect of inlet air temperature on the brake specific fuel	
	consumption, at constant engine speed (1500 rpm) and	
	different engine torques [13]	18
Figure 2.4	Effect of inlet air temperature on the brake specific fuel	
	consumption, at constant engine torque (50 Nm) and different	
	engine speeds [13]	19
Figure 3.1	Recuperator [15]	22
Figure 3.2	(a) Regenerative furnace diagram, (b) Checkerwork in glass	
Figure 3.3	Rotary Regenerator, (b) Rotary Begenerator on a	22
	Melting Furnace 623 hrt. ac. 1k	23
Figure 3.4	Finned tube heat exchangers [17]	23
Figure 3.5	Shell and tube heat exchangers [18]	24
Figure 3.6	Simplified absorption cycle [19]	25
Figure 3.7	Record readings in accordance with the operating log at	
	frequent intervals [26]	30
Figure 4.1	Graphical interpretation of percentage of deration Vs ambient	
	temperature	38
Figure 4.2	Graphical interpretation of percentage of deration Vs altitude	39
Figure 4.3	Graphical interpretation of percentage of deration Vs percentage	
	Of humidity at constant atmospheric temperatures in Table 4.2	
	(Refer Appendix A)	41
Figure 4.4	Fitted line plot of T85 equation	42

Relative humidity Vs temperature	45
Flow chart of the performance evaluation	49
Scatter plot of deration Vs measured temperature readings	
permissible value of -0.1 °C instrument using Matlab software	60
Scatter plot of deration Vs measured temperature readings	
for permissible value of +0.1 °C instrument using Matlab	
software	62
Scatter plot of measured temperature and RH points using	
Matlab software considering the permissible values of the	
instrument (Refer appendix C)	63
Model selection curves, chilled/cooling water temp, cooling	
capacity, COP [34]	80
	Flow chart of the performance evaluation Scatter plot of deration Vs measured temperature readings permissible value of -0.1 °C instrument using Matlab software Scatter plot of deration Vs measured temperature readings for permissible value of +0.1 °C instrument using Matlab software Scatter plot of measured temperature and RH points using Matlab software considering the permissible values of the instrument (Refer appendix C) Model selection curves, chilled/cooling water temp, cooling

LIST OF TABLES

		Page
Table 1.1	Total annual energy dispatch by diesel power stations	
	in Sri Lanka [3]	3
Table 3.1	Performance of the engine at 35°C ambient temperature for	
	different configurations [27]	32
Table 3.2	Cooling potentiality based on engine rating [28]	33
Table 4.1	Numerical values for SFC	37
Table 4.2	Percentage of deration Vs percentage of humidity at constant	
	atmospheric temperatures [30]	40
Table 4.3	Relevant RH and constant temperature of the particular	
	polynomial for zero percentage deration	44
Table 5.1	Site RH and temperature readings at UJPS	
	(0.00hrs on 12.09.2014 to 24.00hrs on 13.09.2014)	51
Table 5.2	Humidity and temperature instrument calibration results	52
Table 5.3	Site humidity and temperature readings at UIPS adjusted for -1%	
	RH permissible difference and -0.1°C of temperature permissib	le
	difference of instrument	
	(0.00hrs on 12.09.2014 to 24.00hrs on 13.09.2014)	53
Table 5.4	Relevant SFC and hourly fuel oil saving	55
Table 5.5	Humidity and temperature readings at UJPS adjusted for +1%	
	of RH permissible difference and +0.1°C of temperature	
	permissible difference of the instrument	
	(0.00hrs on 12.09.2014 to 24.00hrs on 13.09.2014)	56
Table 5.6	Relevant SFC and hourly fuel oil saving amounts for Table 5.5	57
Table 5.7	Deration percentage calculated for ambient temperature readings	
	adjusted for -0.1°C of temperature permissible difference of	
	the instrument (0.00hrs on 12.09.2014 to 24.00hrs on 13.09.2014)	58
Table 5.8	Deration percentage calculated for ambient temperature readings	

	adjusted for $+ 0.1$ °C of temperature permissible difference of	
	the instrument (0.00hrs on 12.09.2014 to 24.00hrs on 13.09.2014)	60
Table 5.9	Calculated a, b, c and d constants of the 3 rd order polynomials	
	and percentage of derations (According to the data in Table 5.3)	65
Table 5.10	Calculated a, b, c and d constants of the 3 rd order polynomials	
	and percentage of derations (According to the data in Table 5.5)	67
Table 5.11	Calculated enthalpy of ambient air (According to the data in	
	Table 5.10)	73
Table 5.12	Summary of the air conditioning units at UJPS	76
Table 5.13	Summary of the required cooling loads to introduce	
	absorption chiller system	76
Table 5.14	BS 500 model steam chiller performance data [34]	79
Table 5.15	Payback period calculation of investment	82

LIST OF ABBREVIATIONS

Abbreviat	ion	Description
AC		Air Conditioning
AN		Acid Number
BSFC		Break Specific Fuel Consumption
CEB		Ceylon Electricity Board
CFC		Chloro Fluoro Carbon
COP		Coefficient of Performance
DEMA		Diesel Engine Manufactures Association
HCFC		Hydro Chloro Fluoro Carbon
HP		Horse Power
HT		High Temperature
HTG		High Temperature Generator
LT		University of perature uwa, Sri Lanka.
PPP		Electrerivet Powerer Que issertations
RH		WWW. Rebative Humildity
RPM		Rounds Per Minute
SCV		Steam Control Valve
SFC		Specific Fuel Oil Consumption
TBN		Total Base Number
TOC		Total Operating Cost
TR		Tons of Refrigerant
UJPS		Uthuru Janani Power Station

LIST OF APPENDICES

Appendix	Description	Page
Appendix – A	Graphical interpretation of Table 4.2 in Mathlab software	89
Appendix – B	Calculations of the model	91
Appendix – C	Scatter plot of measured temperature and RH points using	
	Matlab software	95
Appendix – D	Psychrometric chart enthalpy calculations	98
Appendix – E	Psychrometric chart cooling load calculations	99
Appendix – F	Hot water chiller performance data	100
Appendix – G	Steam chiller performance data	101
Appendix – H	Chiller performance data and prices	102

