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Abstract 

The high-energy ultrasound could be used to devulcanize rubber as it can focus 

energy into localized sites for selective bond rupture. The research work reported to-

date suggests that the ultrasonic technology is more suited to convert rubber waste to 

a usable material efficiently, effectively and environmental friendly. 

The ultrasonic devulcanization reactor consisted of three main sections, namely a 

power source, ultrasonic transducer with sample holding unit, and a monitoring 

system to measure the amplitude, frequency and power. N-cyclohexyl-2-benzthiazyl 

sulfanamide (CBS) accelerated unfilled natural rubber vulcanized with conventional 

sulfur vulcanizing system and with efficient sulfur vulcanizing system were used as 

the model rubber compounds in these experiments. 2 mm thick vulcanized rubber 

sheets were directly kept on the vibrating diaphragm of the ultrasonic transducer. The 

frequency of ultrasonic wave was varied in a range of 20 to 50 kHz and the power 

level was varied up to 800 watt. The treatment time was limited to 10 minutes when 

treated at high power levels. The vibrating amplitudes were measured at different 

power levels with the variation of ultrasonic frequency. 

Curing behaviour, gel content and cross-link density were studied for rubber samples 

devulcanized at different process conditions. The increase in cross-link density and 

gel content of the samples treated at lower amplitudes indicated the formation of 

additional cross-links. However, the higher vibrational energies associated with high 

amplitudes resulted in lower cross-link densities and gel contents indicating a 

breakdown of bonds. Cure curves of virgin and devulcanized NR samples suggested 

that the fast initial curing of devulcanized NR was due to the presence of active 

sufidized rubber molecules formed due to break down of some cross-links during 

devulcanization. The lower maximum torque values observed in the devulcanized 

samples were due to the partial breakdown of C-C bonds in the main chain. The 

tensile properties of the revulcanized samples gave comparable results with that of 

virgin rubber. 



A theoretical process model was developed to express the extent of devulcanization in 

terms of cross-link density. It was based on the vibrational energy transfer 

mechanism. The model treated the vulcanized rubber as a pure elastic solid containing 

void regions. Experimental and theoretical values lied within ± 10% error limits. The 

model showed that the media effect on the nature of void excitation was significant 

and the viscoelasticity was also considerable. However, the effect due to surface 

tension was negligible. 
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