
 References

76

REFERENCES

[1] Fels, M., Special issue devoted to measuring energy savings, the Princeton

scorekeeping method (PRISM), Energy and Buildings, 1986, 9, 1-2.

[2] Kissock, J.K., A methodology to measure retrofit energy savings in commercial

buildings, Doctoral Dissertation, Department of Mechanical Engineering, Texas

A&M University, 1993.

[3] Krarti, M. J., Kreider, D., Cohen, P., Curtiss, Prediction of energy saving for

building retrofits using neural networks, ASME Journal of Solar Energy

Engineering, 1988, 120, 31-35.

[4] Dhar, A., Reddy, T.A., Claridge, A. D. E., Series model to predict hourly heating

and cooling energy use in commercial buildings with outdoor temperature as the

only weather variable, Journal of Solar Energy Engineering, 1999, 121, 47-53.

[5] Dong B., Lee S.E., Sapar M.H.,A holistic utility bill analysis method for baselining

whole commercial building energy consumption in Singapore, Energy and

Buildings, 2005, 37 (2), 167-172.

[6] Dong B., Chen C., Lee S.E., Applying support vector machines to predict building

energy consumption in the tropics, Energy and Buildings, 2005, 37(5), 545-553.

[7] Lokmanhekim, M., Henninger, R. H., Computerized energy requirements analysis

and heating/cooling load calculations of buildings. ASHRAE J, 1972, 14(4), 25-33.

[8] Adrian, S., Brhan, T., Akram, R., Cooling and heating loads in residential buildings

in Jordan, Energy Build, 1997, 26 (2),137-43.

http://dx.doi.org/doi:10.1016/j.enbuild.2004.06.011
http://dx.doi.org/doi:10.1016/j.enbuild.2004.06.011

 References

77

[9] Lao Stephen, T. H., Deng S. M., An evaluation of the rules of thumb for estimating

cooling load for office buildings, Trans Hong Kong Inst Eng, 2001, 8(3), 58-9.

[10] Bojic M., Yik F., Wan K., Burnett, J., Investigations of cooling loads in high-rise

residential buildings in Hong Kong, Strojniski Vestnik.J Mech. Eng., 2001, 47(8),

491.

[11] Probst Oliver., Cooling load of buildings, Appl. Energy, 2004, 77(2), 171-186.

[12] BojiMilorad., Yik F., Cooling energy evaluation for high-rise residential buildings

in Hong Kong, Energy Build, 2005, 37(4), 345-51.

[13] Ansari F. A., Mokhtar A. S., Abbas K. A., Adam N. M., A simple approach for

building cooling load estimation. Am J Environ Sci., 2005, 1(3), 209-20.

[14] Chou S. K., Chang W. L., Large building cooling load and energy use estimation.

Int J Energy Res., 1997, 21(2), 169-83.

[15] Greg J. S., Robert A. K., A correlation method for predicting monthly and annual

cooling loads in direct gain passive solar heated buildings. Energy Convers

Manage., 1989, 29(3), 175-87.

[16] Bauer M., Scartezzini J. L., A simplified correlation method accounting for heating

and cooling loads in energy-efficient buildings, Energy Build, 1998, 27(2), 147-54.

[17] Sodha M. S., Kaur B., Kumar A., Bansal N. K., A comparison of the admittance

and fourier methods for predicting heating/cooling loads, Solar Energy, 1986,

36(2), 125-7.

 References

78

[18] Ben-NakhiAbdullatif E., Mahmoud M. A., Cooling load prediction for buildings

using general regression neural networks, Energy Converse Manage, 2004, 45(13),

2127-41.

[19] Mui K. W., Wong L. T., Cooling load calculations in sub tropical climate, Build

Environ, 2007, 42(7), 2498-504.

[20] Lam J. C., Wan K. K. W., Tsang C. L., Yang L., Building energy efficiency in

different climates, Energy Convers Manage, 2008, 49, 2354-66.

[21] Thevenard D., Haddad K., Ground reflectivity in the context of building energy

simulation, Energy Build, 2006, 38, 972-80.

[22] Eskin N., Türkmen H., Analysis of annual heating and cooling energy requirements

for office buildings in different climates in Turkey, Energy Build, 2008, 40, 763-

73.

[23] González Pedro A., Zamarreño Jesús M., Prediction of hourly energy consumption

in buildings based on a feedback artificial neural network, Energy Build, 2005,

37(6), 595-601.

[24] Yuan Cheng., Minh-Tu Cao., Accurately predicting building energy performance

using evolutionary multivariate adaptive regression, 2014, 22,178-188.

[25] Rishee K., Kevin M., Patricia J. Culligan., John E., Forecasting energy consumption

of multi-family residential buildings using support vector regression: Investigating

the impact of temporal and spatial monitoring granularity on performance

accuracy, 2014, 123, 168-179.

 References

79

[26] Chunlei Zeng., Changchun Wu., LiliZuo., Bin Zhang, Xingqiao Hu, Predicting

energy consumption of multiproduct pipeline using artificial neural networks,

2004, 66, 791-798.

[27] Dong, B., Cao, C., Lee S. E., Applying Support Vector Machines to Predict

Building Energy Consumption in Tropical Region, Energy and Buildings, 2005,

37, 122-26.

[28] Vapnik V., The nature of statistical learning, New York: Springer, 1995, 2, 20-32.

[29] LibSVM “README” tutorial

[30] Hsu., Chang, C-W., Lin, C. C., A practical Guide to Support Vector Classification,

Department of Computer Science, National Taiwan University.

[31] Qiong Li., Applying support vector machine to predict hourly cooling load in the

building, 2009, 86, 2249-2256.

[32] Dew Point, http://en.wikipedia.org/wiki/Dewpoint.

[33] Kreider, J. F., and Wang, X. A., (1992). Improved Artificial Neural Networks for

Commercial Building Energy Use Prediction. Proceedings of the 1992 ASME-

JSES-KSES International Solar Energy Conference, Maui, HI, Apr. 1992, 5-9,

361-366.

[34] Hour, Z., Lian, Z., An Application of support vector machines in cooling load

prediction, School of Mechanical and Electrical Engineering, Shenzhen

Polytechnic and Institute of Refrigeration and Cryogenics Shanhai Jiao Tong

University, 2009.

 References

80

[35] Knebel, D.E., Simplified Energy Analysis Using the Modified Bin Method,

American Society of Heating and Air-Conditioning Engineers, Atlanta, GA, 1983.

[36] Meng, Q., Cai, J., Yoshino, H., Mochida, A., Predicting Hourly Cooling Load in the

Building: A Comparison of Support Vector Ma- chine and Different Artificial

Neural Networks, Energy Conversion and Management, 2009, 5, 90-96.

[37] Cao, L. J., Francis, E. H., Support vector machine with adaptive parameters in

financial time series forecasting, IEEE Transactions on Neural Networks, 2003,

14(6), 1506-1518.

[38] ASHRAE. Handbook of Fundamentals, American Society of Heating, Refrigerating

and Air-Conditioning Engineers, Inc., Atlanta, GA, 2001.

[39] ASHRAE. ASHRAE GUIDELINE 14: Measurement of Energy and Demand

Savings. Atlanta: American Society of Heating, Refrigerating and Air-

Conditioning Engineers, Inc, 2002.

[40] Akbari, H., Heinemeier, K., LeConiac, P., Flora, D. An Algorithm to Disaffregate

Commercial Whole-Building Electric Hourly Load into End Uses, Summer Study

on Energy Efficiency in Buildings, 1988,10,13-26.

[41] Fels, M. F., and Keating, K. M., Measurement of Energy Savings from demand-

side management programs in U.S. electric utilities, Annual Review Energy

Environ, 1993, 18, 57-88.

[42] Reddy. T. A., Saman, N. F., Claridge, D. E., Haberl, J. S., Turner, W. D.,

Chalifoux, A., Base lining Methodology for Facility-Level Monthly Energy Use –

Part 1: Theoretical Aspects, ASHRAE Transactions, 1997, 103, 2.

 References

81

[43] Katipamula S., T. A. Reddy, Claridge D. E., Multivariate Regression Modeling,

ASME Journal of Solar Energy Engineering, 1998, 115, 177-184.

[44] MATLAB 6.5 user’s manual. The Math Works, Inc

[45] Chang, C.-C., and Lin, C.-J. (2001). LIBSVM: a library for support vector

machines. Software available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

[46] Chen, Z.Q., Nelson, R.M. and Ashlock, D.A. (2003). Comparison of methods for

predicting monthly psot-retrofit energy use in buildings, ASHRAE Transactions,

2003,109, 449-459.

[47] Kreider, J. F., Claridge, D. E., Curtiss, P., Dodier, R., Haberl, J. S., Krarti, M.,

Building Energy Use Prediction and System Identification Using Recurrent Neural

Networks, ASME Journal of Solar Energy Engineering, 1995, 117,161-166.

[48] IPMVP. (2001). International Performance Measurement and Verification Protocol,

DOI/GO-102001-1187, Washington D.C.: Department of Energy.

[49] Eto, J., on using degree-days to account for the effects of weather on annual energy

use in office buildings. Energy and Building, 1998, 9, 5-18.

[50] Vapnik, V. N., Golowich, S. E., and Smola, A. J., Support vector method for

function approximation, regression estimation and signal processing, Adv. Neural

Information Processing Syst. 1996, 9, 281-287.

[51] Bowerman, B. L., and O’Connell, R. T., Linear Statistical Models: An Applied

Approach, 1990, Second Edition, Duxbury Press, Belmont, California.

 References

82

[52] Draper, N., and H. Smith., Applied Regression Analysis, 1981, 2, 506.

[53] Day, A. R., Karayiannis, T. G., A New Degree-day Model for Estimating Energy

Demand in Buildings, Building Services Engineering research and Technology,

1999 20(4), 171-178.

[54] Arens, E. A., Carroll, W. L., 1978. Geographical variation in the heating and

cooling requirements of a typical single family house and correlation of these

requirements to degree day. NBS-BBS 116. Gaithersburg, MD: National Bureau of

Standards.

[55] Kissock, J. K., and Fels, M., An assessment of PRISM’s reliability for commercial

buildings. Proceedings of National Energy Program Evaluation Conference,

Chicago, IL, August, 1995.

[56] Day, A. R., and Karayiannis, T. G., (1999). Identification of the Uncertainties in

Degree-day Based Energy Estimates, Building Services Engineering research and

Technology, 1999, 20(4), 165-172.

[57] Katipamula S., Reddy, T. A., Claridge D. E., Multivariate Regression

Modeling,ASME, Journal of Solar Energy Engineering, 1998, 115, 177-184.

[58] Sondereggger, R. A., Baseline model for utility bill analysis using both weatherand

non-weather-related variables, ASHRAE transactions, 1998, 104, 859-870.

[59] Bronson, D., Hinchey, S., Haberl, J. S., O’Neal, D. L., Claridge, D. E., A Procedure

for calibrating the DOE-2 simulation program to non-weather dependent measured

loads, ASHRAE Transactions, 1992, 98(1), 636-652.

 References

83

[60] Katipamula, S., Claridge, D.E., Use of Simplified System Models to

MeasureRetrofit energy savings, Journal of Solar Energy Engineering, 1993, 115,

57-68.

[61] Kyung-Jin Jang, Eric B. Bartlett, Ron M. N., Measuring retrofit energy savings

using auto associative neural networks. ASHRAE Transactions, 1996,102(2), 412-

418.

[62] Knebel, D. E., Simplified energy analysis using the modified bin method, American

Society of Heating, Refrigerating and Air-Conditioning Engineers, Atlanta, GA,

1983.

[63] Cherkassky, V., Ma, Y., Practical selection of SVM parameters and noise

estimation for SVM regression, Neural Networks, 2004, 17, 113-126.

[64] Mukherjee, S., Osuma, E., Girosi, F., Nonlinear prediction of chaotic timeseries

using support vector machine, in Proceedings of IEEE Signal Processing Society

Workshop on Neural Networks for Signal Processing VII (NNSP’97), 1997, 21,

511-520.

[65] Katipamula, S., Claridge, D.E., Use of simplified system models to measure retrofit

energy savings, Journal of Solar Energy Engineering, 1993,115, 57-68.

 Appendix

84

APPENDIX A: AN OVERVIEW OF STATISTICAL LEARNING

THEORY

 Appendix

85

APPENDIX A: AN OVERVIEW OF STATISTICAL LEARNING

THEORY

Vapnik (1995) presents all the machine learning problems as the following:

Given a set of data points ((x1,y1),(x2,y2),…,(x1, y1) (xi ∈ 𝑋 ∁𝑅2, 𝑦𝑖 ∈ 𝑌∁ 𝑅, 𝑙 is the

number of data points, for regression estimation and density estimation and 𝑦𝑖 ∈

𝑌 ∁ 𝑁 for pattern recognition) randomly and independently generated from an

unknown probability distribution p(x,y), find a function f(x,a) that has the minimal

risk function (A.1).

𝑅(𝑓) = ∫ 𝐿9𝑦, 𝑓(𝑥, 𝑎))𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦

 (A.1)

Where a is the parameter of f(x,a). R(f) is called the generalization error or the

expected test error. It is a measure of the generalization performance of f (x,a) . L(y,

f(x,a)) is called the loss function. It is a measure of the deviations between the actual

values and the estimated values on the data points generated from p(x,y)

As p(x,y) is unknown, traditional methods attempt to estimate f (x,a) by minimizing

the empirical risk function:

𝑅𝑒𝑚𝑝(𝑓) =
1

𝑙
∑ 𝐿𝑙

𝑖=1 (𝑥, 𝑎)) (A.2)

𝑅𝑒𝑚𝑝(𝑓) is called the empirical error. That is, is estimated by training samples.

Empirical Risk Minimization (ERM) principle is to minimize the generalization error

by minimizing the empirical error 𝑅𝑒𝑚𝑝(𝑓). Traditional neural networks utilize this

principle.

However, because of the limited number of l, sometimes 𝑅𝑒𝑚𝑝(𝑓) cannot estimate

R(f) well. As described in the statistical learning theory, and have the following

relationship:

𝑅(𝑓) ≤ 𝑅𝑒𝑚𝑝(𝑓) + 𝛺(
𝑙

ℎ
) (A.3)

 Appendix

86

Where h is called the Vapnik-Chervonenkis (VC) dimension. It is a measure of the

capacity of f(x,a), which means that the ability of f(x,a) to learn any training data

point without error. 𝛺 (
𝑙

ℎ
) is called the confidence interval, a decreasing function

of
𝑙

ℎ
, which is the ration of the number of training samples into the VC dimension of

the estimator. Equation (A.3) shows that the value of R(f) depends both on 𝑅𝑒𝑚𝑝(𝑓)

and 𝛺(
𝑙

ℎ
) . Hence, 𝑅𝑒𝑚𝑝(𝑓) can accurately estimate 𝑅(𝑓)only when 𝛺(

𝑙

ℎ
) is small

enough. Because of this, Vapnik developed the Structural Risk Minimization (SRM)

principle. The SRM principle is: one defines a nested structure,S1⊂S2⊂… ⊂Sm…, as

shown in Appendix B.1, on the set of functions 𝑆 = {𝑓(, 𝑎), 𝑎 ∈ ᴧ} with their VC-

dimensions satisfying h1⊂h2⊂…⊂ hm…, and then chooses the structure elementSk

with the minimal upper bound of the generalization error R(f).

Appendix A.1: A structure on the set of functions is determined by the nested subsets

of functions.

The objective of SRM principle is to estimate f(x,a) by minimizing both the

empirical error 𝑅𝑒𝑚𝑝(𝑓)and the confidence interval 𝛺(
𝑙

ℎ
), as shown in Appendix A.2.

It defines a trade-off between the quality of the approximation of the given data and

the complexity of the approximating function.

 S1 Sn

 Appendix

87

Appendix A.2: The bound on the risk is the sum of the empirical risk and of the

confidence interval. The smallest bound of the risk is achieved on some appropriate

element of the structure (Source: Vapnik, 1995)

h

Risk

S*

h* corresponding to S*

Empirical Risk

VC Confidence

Bound of the risk

 Appendix

88

APPENDIX B: AN INTRODUCTION TO LIBSVM 2.6 PROGRAM

 Appendix

89

APPENDIX B: AN INTRODUCTION TO LIBSVM 2.6 PROGRAM

Libsvm is a simple, easy-to-use, and efficient software for SVM classification and

regression. Libsvm 2.6 was developed by Chih-Chung Chang and Chih-Jen Lin in

2001. It can solve C-SVM classification, nu-SVM classification, one-class-SVM,

epsilon-SVM regression, and nu-SVM regression. It also provides an automatic

model selection tool for C-SVM classification.

Libsvm 2.6 is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.

The format of training and testing data file is:

<label><index1>:<value1><index2>:<value2> ...

<label> is the target value of the training data. For classification, it should be an

integer which identifies a class (multi-class classification= is supported). For

regression, it's any real number. For one-class SVM, it's not used so can be any

number. <index> is an integer starting from 1, <value> is a real number. The labels

in the testing data file are only used to calculate accuracy or error. If they are

unknown, just fill this column with a number.

‘svm-train’ Usage

Usage: svm-train [options] training_set_file [model_file]

options:

-s svm_type : set type of SVM (default 0)

0 -- C-SVC

1 -- nu-SVC

2 -- one-class SVM

3 -- epsilon-SVR

4 -- nu-SVR

-t kernel_type : set type of kernel function (default 2)

 Appendix

90

0 -- linear: u'*v

1 -- polynomial: (gamma*u'*v + coef0)^degree

2 -- radial basis function: exp(-gamma*|u-v|^2)

3 -- sigmoid: tanh(gamma*u'*v + coef0)

-d degree : set degree in kernel function (default 3)

-g gamma : set gamma in kernel function (default 1/k)

-r coef0 : set coef0 in kernel function (default 0)

-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

-m cachesize : set cache memory size in MB (default 40)

-e epsilon : set tolerance of termination criterion (default 0.001)

-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)

-b probability_estimates: whether to train an SVC or SVR model for probability

estimates, 0 or 1 (default 0)

-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)

-v n: n-fold cross validation mode

The k in the -g option means the number of attributes in the input data.

option -v randomly splits the data into n parts and calculates cross validation

accuracy/mean squared error on them.

‘svm-predict’ Usage

Usage: svm-predict [options] test_filemodel_fileoutput_file

-b probability estimates: whether to predict probability estimates, 0 or 1 (default 0);

one-class SVM not supported yet

model_file is the model file generated by svm-train.

test_file is the test data you want to predict.

svm-predict will produce output in the output_file.

(Source: Chang and Lin, 2001)

 Appendix

91

APPENDIX C: MAT LAB CODES FOR PROGRAM

 Appendix

92

APPENDIX C: MAT LAB CODES FOR PROGRAM

devidePoint=600;

shift=10;

% output data vection creation for svmtrain

% normalize the output

output = (ElectricalConsumption(:,3)

min(ElectricalConsumption(:,3)))/(max(ElectricalConsumption(:,3))

min(ElectricalConsumption(:,3)));

TrainOutput = output(shift+1:devidePoint+1,:); TestOutput =

output(devidePoint+2:end,:);

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% this section belongs to input data matrix creation

 ‘%normalize inputs

Humidity_norm = (Humidity(:,4)-min(Humidity(:,4)))/(max(Humidity(:,4)-

min(Humidity(:,4))));

MaxTemperature_norm = (MaxTemperature(:,4)-

min(MaxTemperature(:,4)))/(max(MaxTemperature(:,4))-

min(MaxTemperature(:,4)));

SolarRadiation_norm = (SolarRadiation(:,4)-

min(SolarRadiation(:,4)))/(max(SolarRadiation(:,4))-min(SolarRadiation(:,4)));

%moving average input & Outputs

%outputMa1 = transpose(tsmovavg(transpose(output), 'e', shift));

 %outputMa2 = transpose(tsmovavg(transpose(MaxTemperature_norm), 'e',

shift));

%outputMa3 = transpose(tsmovavg(transpose(Humidity_norm), 'e', shift));

 %outputMa4 = transpose(tsmovavg(transpose(SolarRadiation_norm), 'e', shift));

%create time delay input

 timeDelayInput1 = [output(1:end)];

 Appendix

93

 timeDelayInput11 = [output(1);output(1:end-1)];

 timeDelayInput111 = [output(1:2);output(1:end-2)];

 %timeDelayInput2 = [output(1:end)];

 %timeDelayInput22 = [output(1);output(1:end-1)];

 %timeDelayInput222 = [output(1:2);output(1:end-2)];

 %timeDelayInput3 = [outputMa3(1:end)];

 %timeDelayInput33 = [outputMa3(1);outputMa3(1:end-1)];

 %timeDelayInput333 = [outputMa3(1:2);outputMa3(1:end-2)];

 %timeDelayInput4 = [outputMa4(1:end)];

 %timeDelayInput44 = [outputMa4(1);outputMa4(1:end-1)];

 %timeDelayInput444 = [outputMa4(1:2);outputMa4(1:end-2)];

 input =

[timeDelayInput1,timeDelayInput11,timeDelayInput111,MaxTemperature_norm,Hu

midity_norm,SolarRadiation_norm];%,outputMa2,outputMa3,outputMa4];

 %devide input vector for training and testing

 TrainInput = input(shift:devidePoint,:);

 TestInput = input(devidePoint+1:end-1,:);

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% train svm model and set parameters

% Usage: model = svmtrain(training_label_vector, training_instance_matrix,

'libsvm_options');

% libsvm_options:

% -s svm_type : set type of SVM (default 0)

% 0 -- C-SVC

% 1 -- nu-SVC

% 2 -- one-class SVM

% 3 -- epsilon-SVR

 Appendix

94

% 4 -- nu-SVR

% -t kernel_type : set type of kernel function (default 2)

% 0 -- linear: u'*v

% 1 -- polynomial: (gamma*u'*v + coef0)^degree

% 2 -- radial basis function: exp(-gamma*|u-v|^2)

% 3 -- sigmoid: tanh(gamma*u'*v + coef0)

% 4 -- precomputed kernel (kernel values in training_instance_matrix)

% -d degree : set degree in kernel function (default 3)

% -g gamma : set gamma in kernel function (default 1/num_features)

% -r coef0 : set coef0 in kernel function (default 0)

% -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)

% -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)

% -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)

% -m cachesize : set cache memory size in MB (default 100)

% -e epsilon : set tolerance of termination criterion (default 0.001)

% -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1)

% -b probability_estimates : whether to train a SVC or SVR model for probability

estimates, 0 or 1 (default 0)

% -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1)

% -v n : n-fold cross validation mode

% -q : quiet mode (no outputs)

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

 %crossvalidation = svmtrain(TrainOutput,TrainInput,'-m 800 -v 5')

 %K1 = [(1:630), 'K']; % include sample serial number as first column

 %model = svmtrain(label_vector, K1, '-t 4');

 %matlab> [predict_label, accuracy, dec_values] = svmpredict(label_vector, K1,

model); % test the training data

 Appendix

95

ForecastingModel = svmtrain(TrainOutput,TrainInput,'-s 3 -t 2 -g 0.25 -c 1 -p

0.125');

 %svm-scale -l -1 -u 1 -s range train > train.scale

 %svm-scale -r range test > test.scale

%Scale each feature of the training data to be in [-1,1]. Scaling

%factors are stored in the file range and then used for scaling the

%test data.

% svm-train -s 0 -c 5 -t 2 -g 0.5 -e 0.1 data_file

%Train a classifier with RBF kernel exp(-0.5|u-v|^2), C=10, and

%stopping tolerance 0.1.

%svm-train -s 3 -p 0.1 -t 0 data_file

%Solve SVM regression with linear kernel u'v and epsilon=0.1 in the loss function.

%svm-train -c 10 -w1 1 -w2 5 -w4 2 data_file

%Train a classifier with penalty 10 = 1 * 10 for class 1, penalty 50 = 5 * 10 for class

2, and penalty 20 = 2 * 10 for class 4.

%svm-train -s 0 -c 100 -g 0.1 -v 5 data_file

%Do five-fold cross validation for the classifier using the parameters C = 100 and

gamma = 0.1

%svm-train -s 0 -b 1 data_file

%svm-predict -b 1 test_file data_file.model output_file

%Obtain a model with probability information and predict test data with probability

estimates

%svm_parameter(svm_type=0,kernel_type=2,gamma=1,cache_size=40,eps=0.001,C

=1,nr_weight=0,shrinking=1)

 %crossvalidation = svmtrain(TrainOutput,TrainInput,'-m 800 -v 5')

 %/svm-train -c 2 -g 2 svmguide1.scale

 %./svm-predict svmguide1.t.scale svmguide1.scale.model svmguide1.t.predict

 %./svm-train -s 4 -t 2 -g .1 -c 120 TrainFile.txt ModelFile.txt

 %. /svm-predict TestFile.txt ModelFile.txtOutputFile.txt.

 Appendix

96

 %./svm-train svmguide1

 %./svm-predict svmguide1.t svmguide1.model svmguide1.t.predict

% test svm model

%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

[predictionP, accuracyP, decvalueP] = svmpredict(TestOutput,TestInput,

ForecastingModel,'-b 0');

 predictionP;

 accuracyP;

 decvalueP;

 TestOutput;

p1=plot(predictionP);

set(p1,'Color','red')

hold on

p2=plot(TestOutput);

set(p2,'Color','black')

%%%%%%%%%%%%%%%%%%%Whether data%%%%%%%%%%

%p2=plot(Humidity_norm)

%set(p2,'Color','red')

%hold on

%p3=plot(MaxTemperature_norm)

%set(p3,'Color','black')

%hold on

%p5=plot(SolarRadiation_norm)

%set(p5,'Color','blue')

%hold on

%%%%%%%%%%%%%%MSE & R^2, Nsv data%%%%%%%%%%%%%%%

%For constant gamma = 0.1 and varing C values

%p2=plot(X,Y)

 Appendix

97

%set(p2,'Color','red')

%p3=plot(X,Z)

%set(p3,'Color','black')

%p5=plot(X,xxa)

%set(p5,'Color','blue')

%hold on

