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APPENDIX A: AN OVERVIEW OF STATISTICAL LEARNING 

THEORY  

 

Vapnik (1995) presents all the machine learning problems as the following:  

Given a set of data points ((x1,y1),(x2,y2),…,(x1, y1) (xi ∈ 𝑋 ∁𝑅2, 𝑦𝑖 ∈ 𝑌∁ 𝑅, 𝑙 is the 

number of data points, for regression estimation and density estimation and  𝑦𝑖 ∈

𝑌 ∁ 𝑁  for pattern recognition) randomly and independently generated from an 

unknown probability distribution p(x,y), find a function f(x,a) that has the minimal 

risk function (A.1).  

 

𝑅(𝑓) = ∫ 𝐿9𝑦, 𝑓(𝑥, 𝑎))𝑝(𝑥, 𝑦)𝑑𝑥𝑑𝑦
𝑥,𝑦

             (A.1) 

 

Where a is the parameter of f(x,a). R(f) is called the generalization error or the 

expected test error. It is a measure of the generalization performance of f (x,a) . L(y, 

f(x,a)) is called the loss function. It is a measure of the deviations between the actual 

values and the estimated values on the data points generated from p(x,y) 

As p(x,y) is unknown, traditional methods attempt to estimate f (x,a) by minimizing 

the empirical risk function: 

 

𝑅𝑒𝑚𝑝(𝑓) =
1

𝑙
∑ 𝐿𝑙

𝑖=1 (𝑥, 𝑎))               (A.2)  

 

𝑅𝑒𝑚𝑝(𝑓) is called the empirical error. That is, is estimated by training samples. 

Empirical Risk Minimization (ERM) principle is to minimize the generalization error 

by minimizing the empirical error 𝑅𝑒𝑚𝑝(𝑓). Traditional neural networks utilize this 

principle. 

 

However, because of the limited number of l, sometimes 𝑅𝑒𝑚𝑝(𝑓) cannot estimate 

R(f) well. As described in the statistical learning theory, and have the following 

relationship: 

𝑅(𝑓) ≤ 𝑅𝑒𝑚𝑝(𝑓) + 𝛺(
𝑙

ℎ
)              (A.3)  
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Where h is called the Vapnik-Chervonenkis (VC) dimension. It is a measure of the 

capacity of f(x,a), which means that the ability of f(x,a) to learn any training data 

point without error. 𝛺 (
𝑙

ℎ
) is called the confidence interval, a decreasing function 

of 
𝑙

ℎ
, which is the ration of the number of training samples into the VC dimension of 

the estimator. Equation (A.3) shows that the value of R(f) depends both on 𝑅𝑒𝑚𝑝(𝑓) 

and  𝛺(
𝑙

ℎ
) . Hence, 𝑅𝑒𝑚𝑝(𝑓)  can accurately estimate 𝑅(𝑓)only when 𝛺(

𝑙

ℎ
) is small 

enough. Because of this, Vapnik developed the Structural Risk Minimization (SRM) 

principle. The SRM principle is: one defines a nested structure,S1⊂S2⊂… ⊂Sm…, as 

shown in Appendix B.1, on the set of functions 𝑆 = {𝑓(, 𝑎), 𝑎 ∈ ᴧ} with their VC-

dimensions satisfying h1⊂h2⊂…⊂ hm…, and then chooses the structure elementSk 

with the minimal upper bound of the generalization error R(f). 

 

 

 

 

 

 

 

 

Appendix A.1: A structure on the set of functions is determined by the nested subsets 

of functions.  

 

The objective of SRM principle is to estimate f(x,a) by minimizing both the 

empirical error 𝑅𝑒𝑚𝑝(𝑓)and the confidence interval 𝛺(
𝑙

ℎ
), as shown in Appendix A.2. 

It defines a trade-off between the quality of the approximation of the given data and 

the complexity of the approximating function. 

 

 

 

 

  S1 Sn 
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Appendix A.2: The bound on the risk is the sum of the empirical risk and of the 

confidence interval. The smallest bound of the risk is achieved on some appropriate 

element of the structure (Source: Vapnik, 1995)  
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APPENDIX B: AN INTRODUCTION TO LIBSVM 2.6 PROGRAM  

 

Libsvm is a simple, easy-to-use, and efficient software for SVM classification and 

regression. Libsvm 2.6 was developed by Chih-Chung Chang and Chih-Jen Lin in 

2001. It can solve C-SVM classification, nu-SVM classification, one-class-SVM, 

epsilon-SVM regression, and nu-SVM regression. It also provides an automatic 

model selection tool for C-SVM classification.  

 

Libsvm 2.6 is available at http://www.csie.ntu.edu.tw/~cjlin/libsvm.  

 

The format of training and testing data file is:  

<label><index1>:<value1><index2>:<value2> ...  

 

<label> is the target value of the training data. For classification, it should be an 

integer which identifies a class (multi-class classification= is supported). For 

regression, it's any real number. For one-class SVM, it's not used so can be any 

number. <index> is an integer starting from 1, <value> is a real number. The labels 

in the testing data file are only used to calculate accuracy or error. If they are 

unknown, just fill this column with a number.  

 

‘svm-train’ Usage  

 

Usage: svm-train [options] training_set_file [model_file]  

options:  

-s svm_type : set type of SVM (default 0)  

0 -- C-SVC 

1 -- nu-SVC  

2 -- one-class SVM  

3 -- epsilon-SVR  

4 -- nu-SVR 

-t kernel_type : set type of kernel function (default 2)  
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0 -- linear: u'*v  

1 -- polynomial: (gamma*u'*v + coef0)^degree  

2 -- radial basis function: exp(-gamma*|u-v|^2)  

3 -- sigmoid: tanh(gamma*u'*v + coef0)  

 

-d degree : set degree in kernel function (default 3)  

-g gamma : set gamma in kernel function (default 1/k)  

-r coef0 : set coef0 in kernel function (default 0)  

-c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1)  

-n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5)  

-p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1)  

-m cachesize : set cache memory size in MB (default 40)  

-e epsilon : set tolerance of termination criterion (default 0.001)  

-h shrinking: whether to use the shrinking heuristics, 0 or 1 (default 1)  

-b probability_estimates: whether to train an SVC or SVR model for probability 

estimates, 0 or 1 (default 0)  

-wi weight: set the parameter C of class i to weight*C in C-SVC (default 1)  

-v n: n-fold cross validation mode  

 

The k in the -g option means the number of attributes in the input data. 

option -v randomly splits the data into n parts and calculates cross  validation 

accuracy/mean squared error on them.  

 

‘svm-predict’ Usage  

 

Usage: svm-predict [options] test_filemodel_fileoutput_file   

-b probability estimates: whether to predict probability estimates, 0 or 1 (default 0); 

one-class SVM not supported yet  

model_file is the model file generated by svm-train.  

test_file is the test data you want to predict.  

svm-predict will produce output in the output_file.  

(Source: Chang and Lin, 2001) 
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APPENDIX C: MAT LAB CODES FOR PROGRAM 

 

devidePoint=600; 

shift=10; 

% output data vection creation for svmtrain 

% normalize the output 

output = (ElectricalConsumption(:,3) 

min(ElectricalConsumption(:,3)))/(max(ElectricalConsumption(:,3)) 

min(ElectricalConsumption(:,3))); 

 

TrainOutput = output(shift+1:devidePoint+1,:);  TestOutput = 

output(devidePoint+2:end,:); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% this section belongs to input data matrix creation 

 ‘%normalize inputs 

Humidity_norm = (Humidity(:,4)-min(Humidity(:,4)))/(max(Humidity(:,4)-

min(Humidity(:,4)))); 

MaxTemperature_norm = (MaxTemperature(:,4)-

min(MaxTemperature(:,4)))/(max(MaxTemperature(:,4))-

min(MaxTemperature(:,4))); 

SolarRadiation_norm = (SolarRadiation(:,4)-

min(SolarRadiation(:,4)))/(max(SolarRadiation(:,4))-min(SolarRadiation(:,4))); 

%moving average input & Outputs 

%outputMa1 = transpose(tsmovavg(transpose(output), 'e', shift)); 

 %outputMa2 = transpose(tsmovavg(transpose(MaxTemperature_norm ), 'e',    

shift)); 

%outputMa3 = transpose(tsmovavg(transpose( Humidity_norm), 'e', shift));  

 %outputMa4 = transpose(tsmovavg(transpose(SolarRadiation_norm ), 'e', shift)); 

%create time delay input 

       timeDelayInput1   = [output(1:end)]; 
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       timeDelayInput11  = [output(1);output(1:end-1)]; 

       timeDelayInput111 = [output(1:2);output(1:end-2)]; 

 

    %timeDelayInput2   = [output(1:end)]; 

    %timeDelayInput22  = [output(1);output(1:end-1)]; 

    %timeDelayInput222 = [output(1:2);output(1:end-2)]; 

 

    %timeDelayInput3   = [outputMa3(1:end)]; 

    %timeDelayInput33  = [outputMa3(1);outputMa3(1:end-1)]; 

    %timeDelayInput333 = [outputMa3(1:2);outputMa3(1:end-2)]; 

 

    %timeDelayInput4   = [outputMa4(1:end)]; 

    %timeDelayInput44  = [outputMa4(1);outputMa4(1:end-1)]; 

    %timeDelayInput444 = [outputMa4(1:2);outputMa4(1:end-2)];  

 input = 

[timeDelayInput1,timeDelayInput11,timeDelayInput111,MaxTemperature_norm,Hu

midity_norm,SolarRadiation_norm];%,outputMa2,outputMa3,outputMa4]; 

    %devide input vector for training and testing 

       TrainInput = input(shift:devidePoint,:); 

       TestInput = input(devidePoint+1:end-1,:); 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

% train svm model and set parameters 

% Usage: model = svmtrain(training_label_vector, training_instance_matrix, 

'libsvm_options'); 

 

% libsvm_options: 

% -s svm_type : set type of SVM (default 0) 

%  0 -- C-SVC 

%  1 -- nu-SVC 

%  2 -- one-class SVM 

%  3 -- epsilon-SVR 
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%  4 -- nu-SVR 

% -t kernel_type : set type of kernel function (default 2) 

%  0 -- linear: u'*v 

%  1 -- polynomial: (gamma*u'*v + coef0)^degree 

%  2 -- radial basis function: exp(-gamma*|u-v|^2) 

%  3 -- sigmoid: tanh(gamma*u'*v + coef0) 

%  4 -- precomputed kernel (kernel values in training_instance_matrix) 

 

% -d degree : set degree in kernel function (default 3) 

% -g gamma : set gamma in kernel function (default 1/num_features) 

% -r coef0 : set coef0 in kernel function (default 0) 

% -c cost : set the parameter C of C-SVC, epsilon-SVR, and nu-SVR (default 1) 

% -n nu : set the parameter nu of nu-SVC, one-class SVM, and nu-SVR (default 0.5) 

% -p epsilon : set the epsilon in loss function of epsilon-SVR (default 0.1) 

% -m cachesize : set cache memory size in MB (default 100) 

% -e epsilon : set tolerance of termination criterion (default 0.001) 

% -h shrinking : whether to use the shrinking heuristics, 0 or 1 (default 1) 

% -b probability_estimates : whether to train a SVC or SVR model for probability 

estimates, 0 or 1 (default 0) 

% -wi weight : set the parameter C of class i to weight*C, for C-SVC (default 1) 

% -v n : n-fold cross validation mode 

% -q : quiet mode (no outputs) 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

    %crossvalidation = svmtrain(TrainOutput,TrainInput,'-m 800 -v 5') 

    %K1 = [(1:630), 'K']; % include sample serial number as first column 

    %model = svmtrain(label_vector, K1, '-t 4'); 

    %matlab> [predict_label, accuracy, dec_values] = svmpredict(label_vector, K1, 

model); % test the training data 
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ForecastingModel = svmtrain(TrainOutput,TrainInput,'-s 3  -t 2  -g 0.25 -c 1 -p 

0.125'); 

 

 %svm-scale -l -1 -u 1 -s range train > train.scale 

 %svm-scale -r range test > test.scale 

%Scale each feature of the training data to be in [-1,1]. Scaling 

%factors are stored in the file range and then used for scaling the 

%test data. 

 

% svm-train -s 0 -c 5 -t 2 -g 0.5 -e 0.1 data_file  

%Train a classifier with RBF kernel exp(-0.5|u-v|^2), C=10, and 

%stopping tolerance 0.1. 

%svm-train -s 3 -p 0.1 -t 0 data_file 

%Solve SVM regression with linear kernel u'v and epsilon=0.1 in the loss function. 

%svm-train -c 10 -w1 1 -w2 5 -w4 2 data_file 

%Train a classifier with penalty 10 = 1 * 10 for class 1, penalty 50 = 5 * 10 for class 

2, and penalty 20 = 2 * 10 for class 4. 

%svm-train -s 0 -c 100 -g 0.1 -v 5 data_file 

%Do five-fold cross validation for the classifier using the parameters C = 100 and 

gamma = 0.1 

%svm-train -s 0 -b 1 data_file 

%svm-predict -b 1 test_file data_file.model output_file 

%Obtain a model with probability information and predict test data with probability 

estimates 

 

%svm_parameter(svm_type=0,kernel_type=2,gamma=1,cache_size=40,eps=0.001,C

=1,nr_weight=0,shrinking=1)  

    %crossvalidation = svmtrain(TrainOutput,TrainInput,'-m 800 -v 5') 

    %/svm-train -c 2 -g 2 svmguide1.scale 

    %./svm-predict svmguide1.t.scale svmguide1.scale.model svmguide1.t.predict 

    %./svm-train -s 4 -t 2 -g .1 -c 120 TrainFile.txt ModelFile.txt 

    %. /svm-predict TestFile.txt ModelFile.txtOutputFile.txt. 
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    %./svm-train svmguide1 

    %./svm-predict svmguide1.t svmguide1.model svmguide1.t.predict 

% test svm model 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

[predictionP, accuracyP, decvalueP] = svmpredict(TestOutput,TestInput, 

ForecastingModel,'-b 0'); 

    predictionP; 

    accuracyP;    

    decvalueP; 

    TestOutput; 

p1=plot(predictionP); 

set(p1,'Color','red') 

hold on 

p2=plot(TestOutput); 

set(p2,'Color','black') 

%%%%%%%%%%%%%%%%%%%Whether data%%%%%%%%%%  

%p2=plot(Humidity_norm) 

%set(p2,'Color','red') 

%hold on 

 

%p3=plot(MaxTemperature_norm) 

%set(p3,'Color','black') 

%hold on 

 

%p5=plot(SolarRadiation_norm) 

%set(p5,'Color','blue') 

%hold on 

 

%%%%%%%%%%%%%%MSE & R^2, Nsv data%%%%%%%%%%%%%%%    

%For constant gamma = 0.1 and varing C values 

%p2=plot(X,Y) 



                                                                                                                                               Appendix 

97 
 

%set(p2,'Color','red') 

%p3=plot(X,Z) 

%set(p3,'Color','black') 

 

%p5=plot(X,xxa) 

%set(p5,'Color','blue') 

%hold on 

 

 

 

 

 

 

 

 

 


