
58

References

[1] Luiz Pessoa,“Cognition and Emotion”: Scholarpedia, 2009. [Online]. Available:

http://www.scholarpedia.org/article/Cognition_and_emotion [Accessed: December 2013]

[2] Ethem Alpaydin, Lecture slides for Introduction to machine learning, The MIT Press

2004. [Online], Available: http://www.cmpe.boun.edu.tr/~ethem/i2ml [Accessed:

December 2013]

[3] Stuart Russell and Peter Norvig, Artificial intelligence a modern approach, Third

edition, Pearson Education, Inc , 2010, Chapter 21

[4] Jacques Fleuriot, Intelligent Agents and their Environments, School of informatics,

University of Edinburgh, [E-book] Available:

http://www.inf.ed.ac.uk/teaching/courses/inf2d/timetable/01_Intelligent_Agents.pdf

[5] S.R.K.Branavan, David Silver and Reginna Barzilay. Learning to win by Reading

manuals in a Monte-Carlo Framework in Journal of Artificial intelligence Research43

(2012) 661-704, AI Access Foundation, 2012.

[6] S.R.K.Branavan, Harr Chen, Luke S.Zettlemoyer and Reginna Barzilay.

Reinforcment learning for mapping instructions to actions. CSAIL – MIT

[7] S.R.K.Branavan, Nate Kushman, Tao Lei and Reginna Barzilay. Learning High-level

Planning from Text. CSAIL – MIT

[8] James Timothy Oates. Grounding knowledge in sensors: Unsupervised learning for

languages and planning. PhD thesis, University of Massachusetts Amherst, 2001

[9] Deb K.Roy and Alex P. Pentland. Leaning words from sights and sounds: a

computational model. Cognitive Science 26, Pages 113-146 , 2002

http://www.scholarpedia.org/article/Cognition_and_emotion
http://www.cmpe.boun.edu.tr/~ethem/i2ml
http://www.inf.ed.ac.uk/teaching/courses/inf2d/timetable/01_Intelligent_Agents.pdf

59

[10] Chen Yu and Dana H. Ballard. On the integration of grounding language and

learning objects. Department of Computer Science - University of Rochester

[11] Michael Fleischman and Deb Roy. Intentional context in situated natural language

learning. In Proceedings of CoNLL, pages 104-111, 2005.

[12] David L. Chen and Raymond J. Mooney. Learning to sportscast: a test of grounded

language acquisition. In Proceedings of ICML, 2008.

[13] Stefanie Tellex, Thomas Kollar, Steven Dickerson, Matthew R. Walter, Ashis Gopal

Banerjee, Seth Teller, and Nicholas Roy. Understaning natural language commands for

robotic navigation and mobile manipulation. In Proceedings of 25th AAAI Conference on

Artificial Intelligence.

[14] Mortaze Zolfpour Arokhlo, Ali Selamat, Siti Zaiton Mohd Hashim, Md Hafiz

Selamat. Multi-agent Reinforcement Learning for Route Guidance System International

Journal of Advancements in Computing Technology Volume 3, Number 6, July 2011

[15] Jeffrey Lou Adler, Victor J. Blue, “A Cooperative Multi-agent Transportation

Management and Route Guidance System”, Transportation Research Part C, Vol.10,

No.5, pp.433-454, 2002.

[16] Francisco Martinez-Gil, Miguel Lozano and Fernando Fernandez, “Emergent

collective behaviors in a multi-agent reinforcement learning pedestrian simulation: a case

study”, Departament d’Inform`atica. Universitat de Val`encia. Av. de la Universidad s/n,

46100 Burjassot, Valencia, Spain

[17] Francisco Martinez-Gil, Miguel Lozano and Fernando Fernandez, “Multi-agent

reinforcement learning for simulating pedestrian navigation”, Departament

d’Inform`atica. Universitat de Val`encia. Av. de la Universidad s/n,46100 Burjassot,

Valencia, Spain

60

[18] Michelle McPartland and Marcus Gallagher, “Learning to be a Bot: Reinforcment

Learning in Shooter Game”, Artificial Intelligence and Interactive Digital Entertainment

Conference, October 22–24, Stanford, California, 2008.

[19] Sanchez-Crespo, Dalmau.D, Core Techniques and Algorithms in Game

Programming. Indianapolis, Indiana: New Riders, 2003.

[20] Bradley.J, and Hayes. G, “Group Utility Functions: Learning Equilibria between

Groups of Agents in Computer Games By Modifying the Reinforcement Signal”,

Congress on Evolutionary Computation, 2005.

[21] Manslow. J, “Using Reinforcement Learning to Solve AI Control Problems, in AI

Game Programming Wisdom 2”, S. Rabin, (Editor). Hingham, USA: Charles River

Media, 2004.

[22] Merrick.K and Maher.M.L, “Motivated Reinforcement Learning for Non-Player

Characters in Persistent Computer Game Worlds”. In ACM SIGCHI International

Conference on Advances in Computer Entertainment Technology, Los Angeles, USA,

2006.

[23] Luca M. Gambardella and Marco Dorigo, “Ant-Q: A Reinforcement Learning

approach to the travelling salesman problem”,In Proceedings of ML-95, Twelfth Intern.

Conf. on Machine Learning, Morgan Kaufmann, 1995, 252–260.

[24] Dorigo M., V.Maniezzo and A.Colorni, “The Ant System: Optimization by a colony

of cooperating agents”, IEEE Transactions on Systems: Man and Cybernetics, 26, 2, in

press, 1996.

[25]Sascha Lange, Martin Riedmiller and Arne Voigtlander, "Autonomous reinforcement

learning on raw visual input data in a real world application", In International Joint

Conference on Neural Networks. Brisbane, Australia, 2012

61

[26] D. Ernst, P. Geurts, and L. Wehenkel, “Tree-Based Batch Mode Reinforcement

Learning,” Journal of Machine Learning Research, vol. 6,no. 1, pp. 503–556, 2006.

[27] R. Hafner and M. Riedmiller, “Reinforcement learning in feedback control,”

Machine Learning, vol. 27, no. 1, pp. 55–74, 2011, 10.1007/s10994-011-5235-x.

[Online]. Available: http://dx.doi.org/10.1007/s10994-011-5235-x

[28] R. Hadsell, A. Erkan, P. Sermanet, M. Scoffier, U. Muller, and Y. LeCun, “Deep

belief net learning in a long-range vision system for autonomous off-road driving,” in

IEEE/RSJ International Conference on Intelligent Robots and Systems, 2008. IROS 2008,

2008, pp. 628–633.

[29] G. Gordon, “Stable Function Approximation in Dynamic Programming,” in

Proceedings of the 12th Int. Conf. on Machine Learning (ICML), 1995, pp.261–268.

[30] D. Ernst, R. Maree, and L. Wehenkel, “Reinforcement learning with raw pixels as

input states,” in Workshop on Intelligent Computing in Pattern Analysis/Synthesis

(IWICPAS), 2006, pp. 446–454.

[31] S. Jodogne and J. Piater, “Closed-loop learning of visual control policies,” Journal of

Artificial Intelligence Research, vol. 28, pp. 349–391, 2007.

[32] S. Jodogne, C. Briquet, and J. Piater, “Approximate Policy Iteration for Closed-Loop

Learning of Visual Tasks,” in Proceedings of the European Conference on Machine

Learning, 2006.

[33] Richard S. Sutton and Andrew G. Barto, Reinforcement Learning: An Introduction

A Bradford Book The MIT PressCambridge, Massachusetts London, England

62

Appendix A:
Intelligence Agent and their behaviour

A.1 Intelligence Agent and their behaviour comparison

This table explains the comparison of intelligence agents and their behaviour. The agents

defined here can be falling in to the other environment types as well; here what only

considered is the major behaviour of the particular agents.

Task
Environment Observable Agent Deterministic Episodic Static Discrete Benign/Adversarial

Crossword
Puzzle Fully Single Deterministic Sequential Static Discrete Benign

Chess with a
clock Fully Multi Deterministic Sequential Semi Discrete Adversarial

Poker Partially Multi Stochastic Sequential Static Discrete Adversarial

Backgammon Fully Multi Stochastic Sequential Static Discrete Adversarial

Taxi driving Partially Multi Stochastic Sequential Dynamic Continuous Benign

Medical
Diagnosis Partially Single Stochastic Sequential Dynamic Continuous Benign

Image
Analysis Fully Single Deterministic Episodic Semi Continuous Benign

Part-picking
robot Partially Single Stochastic Episodic Dynamic Continuous Benign

Interactive
English
Tutor

Partially Multi Stochastic Sequential Dynamic Continuous Adversarial

Mail-Sorting
robot Fully Single Deterministic Episodic Dynamic Continuous Benign

63

A.2 Intelligence Agents and the structure of the agents

The following details are taken from the book Stuart Russell and Peter Norvig, Artificial

intelligence a modern approach [3].

Simple reflex agent

The simplest kind of agent is the simple reflex agent. These agents select actions on the

basis of the current percept, ignoring the rest of the percept history Simple reflex

behaviours occur even in more complex environments. Imagine yourself as the driver of

the automated taxi. If the car in front brakes and its brake lights come on, then you should

notice this and initiate braking. In other words, some processing is done on the visual

input to establish the condition we call "The car in front is braking." Then, this triggers

some established connection in the agent program to the action "initiate braking." We call

such a connection a condition-action rule written as;

if car- in-front- is- braking then initiate- braking.

The following diagram shows how the condition-action rules allow the agent to make the

connection from percept to action.

Schematic diagram of Simple Reflex Agent

 A
ge

nt

En
vi

ro
nm

en
t

What the world is like now

What action I should do now

Sensors

Actuators

Condition-
action rules

64

Humans also have many such connections, some of which are learned responses (as for

driving) and some of which are innate reflexes (such as blinking when something

approaches the eye). In the course of the book, we show several different ways in which

such connections can be learned and implemented.

Model based reflex agent

The most effective way to handle partial observability is for the agent to keep track of the

part of the world it can't see now. That is, the agent should maintain some sort of internal

state that depends on the percept history and thereby reflects at least some of the

unobserved aspects of the current state. For the braking problem, the internal state is not

too extensive-just the previous frame from the camera, allowing the agent to detect when

two red lights at the edge of the vehicle go on or off simultaneously. For other driving

tasks such as changing lanes, the agent needs to keep track of where the other cars are if it

can't see them all at once.

 Regardless of the kind of representation used, it is seldom possible for the agent to

determine the current state of a partially observable environment exactly. Instead, the box

labelled "what the world is like now" (in the following diagram) represents the agent's

"best guess/guesses".

 Schematic diagram of Model-based reflex agent

Agent

En
vi

ro
nm

en
t

What the world is like now

What action I should do now

Sensors

Actuators

Condition-
action rules

State

How the world evolves

What my actions do

65

For example, an automated taxi may not be able to see around the large truck that has

stopped in front of it and can only guess about what may be causing the hold - up. Thus,

uncertainty about the current state may be unavoidable, but the agent still has to make a

decision.

Goal-based Agent

Knowing something about the current state of the environment is not always enough to

decide what to do. For example, at a road junction, the taxi can turn left, turn right, or go

straight on. The correct decision depends on where the taxi is trying to get to. In other

words, as well as a current state description, the agent needs some sort of goal

information that describes situations that are desirable—for example, being at the

passenger's destination. The agent program can combine this with the model (the same

information as was used in the model-based reflex agent) to choose actions that achieve

the goal. The following diagram shows the goal-based agent's structure.

 Goal based agent

Agent

Agent

En
vi

ro
nm

en
t

What the world is like now

What action I should do now

Sensors

Actuators

Goals

State

What my actions do

What it will be like if I do action A

How the world evolves

66

Utility-based agents

Goals alone are not enough to generate high-quality behaviour in most environments. For

example, many action sequences will get the taxi to its destination (thereby achieving the

goal) but some are quicker, safer, more reliable, or cheaper than others. Goals just

provide a crude binary distinction between "happy" and "unhappy" states. A more general

performance measure should allow a comparison of different world states according to

exactly how happy they would make the agent. Because "happy" does not sound very

scientific, economists and computer scientists use the term utility instead.

Utility-based agent

Agent

Agent

En
vi

ro
nm

en
t

What the world is like now

What action I should do now

Sensors

Actuators

State

What my actions do
What it will be like if I do action A

How the world evolves

How happy I will be in such a state Utility

67

Learning agent

One of the advantages in learning agent is that it allows the agent to operate in initially

unknown environments and to become more competent than its initial knowledge alone

might allow. A learning agent can be divided into four conceptual components as shown

as in the following diagram.

The most important distinction is between the learning element, which is responsible for

making improvements, and the performance element, which is responsible for selecting

external actions. The performance element is what we have previously considered to be

the entire agent: it takes in perceptions and decides on actions. The learning element uses

feedback from the critic on how the agent is doing and determines how the performance

element should be modified to do better in the future.

A general model of learning agent

Agent

Agent

En
vi

ro
nm

en
t

Sensors

Actuators

Critic

Learning
element

Problem
generator

Performance
element

Performance Standards

feedback

Changes

Knowledge
Learning goals

68

The design of the learning element depends very much on the design of the performance

element. When trying to design an agent that learns a certain capability, the first question

is not "How am I going to get it to team this?" but "What kind of performance element

will my agent need to do this once it has learned how?" Given an agent design, learning

mechanisms can be constructed to improve every part of the agent. The critic tells the

learning element how well the agent is doing with respect to a fixed performance

standard. The critic is necessary because the percept themselves provide no indication of

the agent's success. For example, a chess program could receive a percept indicating that

it has checkmated its opponent, but it needs a performance standard to know that this is a

good thing; the percept itself does not say so. It is important that the performance

standard be fixed. Conceptually, one should think of it as being outside the agent

altogether because the agent must not modify it to fit its own behaviour. The last

component of the learning agent is the problem generator. It is responsible for suggesting

actions that will lead to new and informative experiences.

69

A.3 Ant-Q algorithm

Ant-Q is an algorithm which is inspired by both Q-learning algorithm and the observation

of and colonies behaviour. The following algorithm is an Ant-Q algorithm modelled for

Travelling Salesman Problem (TSP) [23] which is explained under the Chapter 2.

70

A.4 Deep fitted Q algorithm schema

The following algorithm is a general algorithm scheme of Deep fitted Q with the two

basic building blocks encoder training and fitting the Q values [25] which is discussed in

the subsection 2.3 under chapter 2.

71

Appendix B:
Major Implementation in Software Development

B.1 Implementation of the RLearner Class

import java.util.Vector;
import java.lang.*;
import java.lang.reflect.*;

public class RLearner {

 RLWorld thisWorld;
 RLPolicy policy;

 // Learning types
 public static final int Q_LEARNING = 1;
 public static final int SARSA = 2;
 public static final int Q_LAMBDA = 3; // Good parms were lambda=0.05,
gamma=0.1, alpha=0.01, epsilon=0.1

 // Action selection types
 public static final int E_GREEDY = 1;
 public static final int SOFTMAX = 2;

 int learningMethod;
 int actionSelection;

 double epsilon;
 double temp;

 double alpha;
 double gamma;
 double lambda;

 int[] dimSize;
 int[] state;
 int[] newstate;
 int action;
 double reward;

 int epochs;
 public int epochsdone;

 Thread thisThread;
 public boolean running;

 Vector trace = new Vector();
 int[] saPair;

72

long timer;

 boolean random = false;
 Runnable a;

 public RLearner(RLWorld world) {
 // Getting the world from the invoking method.
 thisWorld = world;

 // Get dimensions of the world.
 dimSize = thisWorld.getDimension();

 // Creating new policy with dimensions to suit the world.
 policy = new RLPolicy(dimSize);

 // Initializing the policy with the initial values defined
by the world.
 policy.initValues(thisWorld.getInitValues());

 learningMethod = Q_LEARNING; //Q_LAMBDA;//SARSA;
 actionSelection = E_GREEDY;

 // set default values
 epsilon = 0.1;
 temp = 1;

 alpha = 1; // For CliffWorld alpha = 1 is good
 gamma = 0.1;
 lambda = 0.1; // For CliffWorld gamma = 0.1, l = 0.5
(l*g=0.05)is a good choice.

 System.out.println("RLearner initialised");

 }

// execute one trial
 public void runTrial() {
 System.out.println("Learning! ("+epochs+" epochs)\n");
 for(int i = 0 ; i < epochs ; i++) {
 if(! running) break;

 runEpoch();

 if(i % 1000 == 0) {
 // give text output
 timer = (System.currentTimeMillis() - timer);
 System.out.println("Epoch:" + i + " : " +
timer);
 timer = System.currentTimeMillis();
 }
 }
 }

73

// execute one epoch
 public void runEpoch() {

 // Reset state to start position defined by the world.
 state = thisWorld.resetState();

 switch(learningMethod) {

 case Q_LEARNING : {

 double this_Q; double max_Q; double new_Q;

 while(! thisWorld.endState()) {

 if(! running) break;
 action = selectAction(state);
 newstate = thisWorld.getNextState(action);
 reward = thisWorld.getReward();

 this_Q = policy.getQValue(state, action);
 max_Q = policy.getMaxQValue(newstate);

 // Calculate new Value for Q
 new_Q = this_Q + alpha * (reward + gamma *
max_Q - this_Q);
 policy.setQValue(state, action, new_Q);
 // Set state to the new state.
 state = newstate;
 }

 }
case SARSA : {

 int newaction; double this_Q; double next_Q; double new_Q;

 action = selectAction(state);
 while(! thisWorld.endState()) {

 if(! running) break;

 newstate = thisWorld.getNextState(action);
 reward = thisWorld.getReward();
 newaction = selectAction(newstate);
 this_Q = policy.getQValue(state, action);
 next_Q = policy.getQValue(newstate, newaction);
 new_Q = this_Q + alpha * (reward + gamma * next_Q -
this_Q);
 policy.setQValue(state, action, new_Q);

 // Set state to the new state and action to the new
action.
 state = newstate;
 action = newaction;
 }

 }

74

B.2 Class Diagram

