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Appendix A: 
Intelligence Agent and their behaviour  
 
A.1 Intelligence Agent and their behaviour comparison 
 
This table explains the comparison of intelligence agents and their behaviour. The agents 

defined here can be falling in to the other environment types as well; here what only 

considered is the major behaviour of the particular agents. 

 
 

Task 
Environment Observable Agent Deterministic Episodic Static Discrete Benign/Adversarial 

Crossword 
Puzzle Fully Single Deterministic Sequential Static Discrete Benign 

Chess with a 
clock Fully Multi Deterministic Sequential Semi Discrete Adversarial 

Poker Partially Multi Stochastic Sequential Static Discrete Adversarial 

Backgammon Fully Multi Stochastic Sequential Static Discrete Adversarial 

Taxi driving Partially Multi Stochastic Sequential Dynamic Continuous Benign 

Medical 
Diagnosis Partially Single Stochastic Sequential Dynamic Continuous Benign 

Image 
Analysis Fully Single Deterministic Episodic Semi Continuous Benign 

Part-picking 
robot Partially Single Stochastic Episodic Dynamic Continuous Benign 

Interactive 
English 
Tutor 

Partially Multi Stochastic Sequential Dynamic Continuous Adversarial 

Mail-Sorting 
robot Fully Single Deterministic Episodic Dynamic Continuous Benign 
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A.2 Intelligence Agents and the structure of the agents 
 
The following details are taken from the book Stuart Russell and Peter Norvig, Artificial 

intelligence a modern approach [3]. 

 

Simple reflex agent 
  
The simplest kind of agent is the simple reflex agent. These agents select actions on the 

basis of the current percept, ignoring the rest of the percept history Simple reflex 

behaviours occur even in more complex environments. Imagine yourself as the driver of 

the automated taxi. If the car in front brakes and its brake lights come on, then you should 

notice this and initiate braking. In other words, some processing is done on the visual 

input to establish the condition we call "The car in front is braking." Then, this triggers 

some established connection in the agent program to the action "initiate braking." We call 

such a connection a condition-action rule written as; 

if car- in-front- is- braking then initiate- braking. 

 

The following diagram shows how the condition-action rules allow the agent to make the 

connection from percept to action. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Schematic diagram of Simple Reflex Agent 
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Humans also have many such connections, some of which are learned responses (as for 

driving) and some of which are innate reflexes (such as blinking when something 

approaches the eye). In the course of the book, we show several different ways in which 

such connections can be learned and implemented.  

 

Model based reflex agent 
 
The most effective way to handle partial observability is for the agent to keep track of the 

part of the world it can't see now. That is, the agent should maintain some sort of internal 

state that depends on the percept history and thereby reflects at least some of the 

unobserved aspects of the current state. For the braking problem, the internal state is not 

too extensive-just the previous frame from the camera, allowing the agent to detect when 

two red lights at the edge of the vehicle go on or off simultaneously. For other driving 

tasks such as changing lanes, the agent needs to keep track of where the other cars are if it 

can't see them all at once. 

 

 Regardless of the kind of representation used, it is seldom possible for the agent to 

determine the current state of a partially observable environment exactly. Instead, the box 

labelled "what the world is like now" (in the following diagram) represents the agent's 

"best guess/guesses".  
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For example, an automated taxi may not be able to see around the large truck that has 

stopped in front of it and can only guess about what may be causing the hold - up. Thus, 

uncertainty about the current state may be unavoidable, but the agent still has to make a 

decision. 

 
 
Goal-based Agent 
 

Knowing something about the current state of the environment is not always enough to 

decide what to do. For example, at a road junction, the taxi can turn left, turn right, or go 

straight on. The correct decision depends on where the taxi is trying to get to. In other 

words, as well as a current state description, the agent needs some sort of goal 

information that describes situations that are desirable—for example, being at the 

passenger's destination. The agent program can combine this with the model (the same 

information as was used in the model-based reflex agent) to choose actions that achieve 

the goal. The following diagram shows the goal-based agent's structure. 
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Utility-based agents 
 
Goals alone are not enough to generate high-quality behaviour in most environments. For 

example, many action sequences will get the taxi to its destination (thereby achieving the 

goal) but some are quicker, safer, more reliable, or cheaper than others. Goals just 

provide a crude binary distinction between "happy" and "unhappy" states. A more general 

performance measure should allow a comparison of different world states according to 

exactly how happy they would make the agent. Because "happy" does not sound very 

scientific, economists and computer scientists use the term utility instead. 
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Learning agent 
 
One of the advantages in learning agent is that it allows the agent to operate in initially 

unknown environments and to become more competent than its initial knowledge alone 

might allow. A learning agent can be divided into four conceptual components as shown 

as in the following diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The most important distinction is between the learning element, which is responsible for 

making improvements, and the performance element, which is responsible for selecting 

external actions. The performance element is what we have previously considered to be 

the entire agent: it takes in perceptions and decides on actions. The learning element uses 

feedback from the critic on how the agent is doing and determines how the performance 

element should be modified to do better in the future. 

 

A general model of learning agent 
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The design of the learning element depends very much on the design of the performance 

element. When trying to design an agent that learns a certain capability, the first question 

is not "How am I going to get it to team this?" but "What kind of performance element 

will my agent need to do this once it has learned how?" Given an agent design, learning 

mechanisms can be constructed to improve every part of the agent. The critic tells the 

learning element how well the agent is doing with respect to a fixed performance 

standard. The critic is necessary because the percept themselves provide no indication of 

the agent's success. For example, a chess program could receive a percept indicating that 

it has checkmated its opponent, but it needs a performance standard to know that this is a 

good thing; the percept itself does not say so. It is important that the performance 

standard be fixed. Conceptually, one should think of it as being outside the agent 

altogether because the agent must not modify it to fit its own behaviour. The last 

component of the learning agent is the problem generator. It is responsible for suggesting 

actions that will lead to new and informative experiences. 
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A.3 Ant-Q algorithm 
 
Ant-Q is an algorithm which is inspired by both Q-learning algorithm and the observation 

of and colonies behaviour. The following algorithm is an Ant-Q algorithm modelled for 

Travelling Salesman Problem (TSP) [23] which is explained under the Chapter 2. 
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A.4 Deep fitted Q algorithm schema 
 
The following algorithm is a general algorithm scheme of Deep fitted Q with the two 

basic building blocks encoder training and fitting the Q values [25] which is discussed in 

the subsection 2.3 under chapter 2.  
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Appendix B: 
Major Implementation in Software Development  
 
B.1 Implementation of the RLearner Class 
 
 
 
 
 
 
  

import java.util.Vector; 
import java.lang.*; 
import java.lang.reflect.*; 
 
public class RLearner { 
 
    RLWorld thisWorld; 
    RLPolicy policy; 
 
    // Learning types 
    public static final int Q_LEARNING = 1; 
    public static final int SARSA = 2; 
    public static final int Q_LAMBDA = 3; // Good parms were lambda=0.05, 
gamma=0.1, alpha=0.01, epsilon=0.1 
 
    // Action selection types 
    public static final int E_GREEDY = 1; 
    public static final int SOFTMAX = 2; 
 
    int learningMethod; 
    int actionSelection; 
 
    double epsilon; 
    double temp; 
 
    double alpha; 
    double gamma; 
    double lambda; 
 
    int[] dimSize; 
    int[] state; 
    int[] newstate; 
    int action; 
    double reward; 
 
    int epochs; 
 public int epochsdone; 
  
    Thread thisThread; 
    public boolean running; 
 
    Vector trace = new Vector(); 
    int[] saPair; 
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long timer; 
 
    boolean random = false; 
 Runnable a; 
 
    public RLearner( RLWorld world) { 
  // Getting the world from the invoking method. 
  thisWorld = world; 
 
  // Get dimensions of the world. 
  dimSize = thisWorld.getDimension(); 
  
  // Creating new policy with dimensions to suit the world. 
  policy = new RLPolicy( dimSize ); 
 
  // Initializing the policy with the initial values defined 
by the world. 
  policy.initValues( thisWorld.getInitValues() ); 
  
  learningMethod = Q_LEARNING;  //Q_LAMBDA;//SARSA; 
  actionSelection = E_GREEDY; 
  
  // set default values 
  epsilon = 0.1; 
  temp = 1; 
 
  alpha = 1; // For CliffWorld alpha = 1 is good 
  gamma = 0.1; 
  lambda = 0.1;  // For CliffWorld gamma = 0.1, l = 0.5 
(l*g=0.05)is a good choice. 
 
  System.out.println( "RLearner initialised" ); 
  
    } 
 
 
 
// execute one trial 
 public void runTrial() { 
  System.out.println( "Learning! ("+epochs+" epochs)\n" ); 
  for( int i = 0 ; i < epochs ; i++ ) { 
    if( ! running ) break; 
   
    runEpoch(); 
     
   if( i % 1000 == 0 ) { 
       // give text output 
       timer = ( System.currentTimeMillis() - timer ); 
       System.out.println("Epoch:" + i + " : " + 
timer); 
       timer = System.currentTimeMillis(); 
   } 
  } 
 } 
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// execute one epoch 
 public void runEpoch() { 
  
  // Reset state to start position defined by the world. 
  state = thisWorld.resetState(); 
   
  switch( learningMethod ) { 
      
  case Q_LEARNING : { 
      
      double this_Q;   double max_Q;    double new_Q; 
 
   while( ! thisWorld.endState() ) { 
       
       if( ! running ) break; 
    action = selectAction( state ); 
        newstate = thisWorld.getNextState( action ); 
    reward = thisWorld.getReward(); 
       
     this_Q = policy.getQValue( state, action ); 
     max_Q = policy.getMaxQValue( newstate ); 
 
     // Calculate new Value for Q 
     new_Q = this_Q + alpha * ( reward + gamma * 
max_Q - this_Q ); 
     policy.setQValue( state, action, new_Q ); 
     // Set state to the new state. 
     state = newstate; 
   }   
      
     } 
case SARSA : { 
      
     int newaction; double this_Q; double next_Q;  double new_Q; 
 
     action = selectAction( state ); 
  while( ! thisWorld.endState() ) { 
   
      if( ! running ) break; 
       
      newstate = thisWorld.getNextState( action ); 
      reward = thisWorld.getReward(); 
      newaction = selectAction( newstate ); 
      this_Q = policy.getQValue( state, action ); 
      next_Q = policy.getQValue( newstate, newaction ); 
      new_Q = this_Q + alpha * ( reward + gamma * next_Q - 
this_Q ); 
      policy.setQValue( state, action, new_Q ); 
       
      // Set state to the new state and action to the new 
action. 
      state = newstate; 
      action = newaction; 
  } 
   
 } 
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B.2 Class Diagram 
 
 


