

Multi Agent System for Ride Sharing and Carpooling

P.K.H.A. Sirisena

129109H

Faculty of Information Technology

University of Moratuwa

August 2014

Multi Agent System for Ride Sharing and Carpooling

P.K.H.A. Sirisena

129109H

Dissertation submitted to the Faculty of Information Technology, University of

Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of MSc

in Artificial Intelligence

February 2015

ii

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any

material previously submitted for a Degree or a Diploma in any University and to the best

of my knowledge and belief, it does not contain any material previously published or

written by another person or myself except where due reference is made in the text. I also

hereby give consent for my dissertation, if accepted, to be made available for

photocopying and for interlibrary loans, and for the title and summary to be made

available to outside organizations.

HariniSirisena

Name of Student Signature of Student

 Date:

Supervised by

Prof. Asoka Karunananda

Name of Supervisor Signature of Supervisor

 Date:

iii

Acknowledgement

I am grateful for all the support I received from my lecturers, friends and family to

complete this research thesis. I extend my gratitude to my lecturers from my postgraduate

course who have assisted me in my studies and my research work. Special thanks to Prof.

Asoka Karunanada who supervised this project and provided valuable insight and advice.

Last but not least I would like to thank all my friends and family who have supported me

throughout my studies.

iv

Abstract

This thesis describes the research done to implement a ridesharing solution in Sri Lanka

using a multi-agent system based approach. Particularly this research focuses on

implementing a carpooling/ridesharing solution using real geospatial data extracted from

a geographic information system. Emphasis is placed on solving the complex problem of

user route matching based on journey start, end locations and route overlap.Carpooling is

the sharing of car journeys so that more than one person travels in a car. By having more

people using one vehicle, carpooling reduces each person's travel costs such as fuel costs,

tolls, and the stress of driving. Carpooling is seen as a more environmentally friendly and

sustainable way to travel,since sharing journeys reduces carbon emissions, traffic

congestion on the roads, and the need for parking spaces. Carpooling/ridesharing

however has many challenges such as socio-cultural challenges, which need to be looked

into when implementing a solution.

A multi agent based solution is proposed due to the complex and dynamic nature of the

problem.For this system, users are simulated using the simulation capabilities of a multi

agent system. Route data for the simulated users are generated using a list of addresses in

the Western Province of Sri Lanka. The list of addresses are then converted to geo

location data and randomly paired using a randomized pairing algorithm to generate

routes for the users. Agents generated with the simulated routes are allowed to interact

with one another to group together and form ride shares or carpools. A Route Match

Agent is implemented with a custom route match algorithm in order to find the best

pairings for ride shares and carpools. Carpools are identified as an extension of

rideshares, established between multiple users who have overlapping journeys with

approximately the same route distances. The system also includes a social network

module where connections between users are mapped as first and second degree

connections.The available rideshares/carpools for user are then ranked based on the social

connections. Running tests against the system showed that it is effective in finding the

optimal carpools for users. The simulation also showed that for successful carpools to be

established, a large user pool from the same area is required.

v

Contents

Chapter 1 Introduction... 1

1.1 Prolegomenon .. 1

1.3 Problem definition ... 1

1.4 Aim and Objectives.. 3

1.5 Outline.. 3

1.6 Summary .. 4

Chapter 2 Analysis of carpooling/ridesharing solutions .. 5

2.1 Introduction .. 5

2.2 Research into the challenges of carpooling and ridesharing 5

2.3 Solving the carpooling problem using multi agent systems 6

2.4 Other solutions to the carpooling problem... 10

2.5 Summary .. 12

Chapter 3 Multi Agent Systems and their applications ... 13

3.1 Introduction .. 13

3.2 Agent Definition .. 13

3.3 Multi agent system implementation ... 15

3.4 Multi agent system architecture ... 13

3.5 Communication, cordination and negotiation .. 13

3.6 JADE .. 20

3.7 MAS in Traffic and Transportation ... 20

3.8 Summary .. 21

Chapter 4 Solving complexity using a multi agent system ... 22

4.1 Introduction .. 22

4.2 Hypothesis.. 22

4.3 System requirements and features ... 22

4.4 Solution overview .. 23

4.5 Summary .. 24

vi

Chapter 5 Design .. 25

5.1 Introduction .. 25

5.2 System layered architecture ... 25

5.3 Interface Layer ... 26

5.4 Agent Layer ... 26

5.5 Ontology Layer .. 27

5.6 System activity diagrams ... 28

5.7 Summary .. 32

Chapter 6 Implementation .. 33

6.1 Introduction .. 33

6.2 Interface module implementation .. 33

6.3 Agent layer implementation ... 33

6.4 JADE agent behaviors... 33

6.5 System agents.. 35

6.6 Route Match Agent Algorithm .. 38

6.7 Ontology layer implementation ... 40

6.8 Database layer implementation .. 40

6.9 Social network module .. 40

6.10 Maps data Layer ... 41

6.10 Implementing the application using JADE .. 43

6.11 Summary .. 44

Chapter 7 Evaluation .. 45

7.1 Introduction .. 45

7.2 Evaluating the route match algorithm .. 45

7.3 MAS Simulation .. 46

7.4 Simulation Results ... 47

7.5 Summary .. 51

Chapter 8 Conclusion ... 52

8.1 Introduction .. 52

vii

8.2 Discussion .. 52

8.3 Future work .. 54

8.4 Summary .. 55

References .. 56

Appendix A: JADE Architecture Overview ... 60

A.1 Introduction ... 60

A.2 JADE Architecture Overview ... 60

Appendix B: List of simulated users and their routes ... 63

B.1 Introduction ... 63

B.1 List of addresses for user simulation ... 63

B.1 List of simulated users and their routes ... 63

Appendix C: FIPA ACL Message Structure .. 69

C.1 Introduction ... 60

C.2 FIPA ACL message structure ... 69

viii

List of Figures

Figure 5.1: System architecture .. 26

Figure 5.2: Database Diagram .. 28

Figure 5.3: Store driver journey in system.. 29

Figure 5.4: Store passenger journey in system ... 30

Figure 5.5: Journey match process.. 31

Figure 6.1: Flow of agent behaviour ... 35

Figure 6.2: Haversine formula .. 39

Figure 6.3: Finding journey overlap ... 40

Figure 7.3: Rise is the number of optimal ride shares with number ofsimulated users 48

ix

List of Tables

Table 7.1: Optimal rideshare establsihed for 50 users .. 47

Table 7.2: Number of rideshares against number of simulated users 48

Table 7.3: All possible dual member carpools for 100 users .. 50

Table 7.4: Carpool with 4 users .. 30

Table 7.5: Carpool with 3 users .. 51

Table 7.6: Carpool with 3 users .. 51

1

Chapter 1

Introduction

1.1 Prolegomenon

This thesis covers a research done to introduce a car pooling and ride sharing solution to

Sri Lanka. It introduces a novel and generalized method towards matching passengers

and drivers so that matching is based on journey intersections. Journey intersections are

found by using a multi agent based technology which is supported by a maps ontology

and API.

In Sri Lanka, especially in Colombo and its outskirts traffic congestion is increasingly

evident most commonly during the morning when people are travelling to work, and

again in the evenings when people are travelling back home. A significant portion of this

traffic is caused by SOVs (Single Occupancy Vehicles). SOVs are not only a cause for

unwarranted congestion but also contribute significantly to pollution on a per person

basis. Quite often groups of co-workers from the same company/ institute live in

adjoining neighborhoods. In such situations a car pooling/ride sharing solution will allow

for these coworkers to travel to work together daily and thereby conserve valuable

resources such as time and fuel. A worker who is riding to work via public transport,

private transport (such as office van or shuttle service), will also have the opportunity to

utilize the time spent travelling for a productive task, whereas a person driving does not

have that luxury. Sharing rides or carpooling also has the promise to build strong social

networks of support in society. Most importantly carpooling/ride sharing solutions will

cut down on traffic congestion and pollution in the city.

1.3 Problem definition

Carpooling (also car-sharing, ride-sharing and lift-sharing), is the sharing of car journeys

so that more than one person travels in a car. By having more people using one vehicle,

carpooling reduces each person's travel costs such as fuel costs, tolls, and the stress of

2

driving. Carpooling is seen as a more environmentally friendly and sustainable way to

travel as sharing journeys reduces carbon emissions, traffic congestion on the roads, and

the need for parking spaces. Authorities often encourage carpooling, especially during

high pollution periods and high fuel prices.

Carpooling is very popular in western countries such as the United States, Canda and

many European countries. In such countries, carpooling is significantly correlated with

transport operating costs, including gas prices and commute length. However, carpooling

is significantly less likely among people who spend more time at work, older workers,

and homeowners. Carpool commuting is more popular for people who work in places

with more jobs nearby, and who live in places with higher residential densities[1].

Majority of car pools are “fam-pools” consisting of family members, however a car pool

can also consist of office colleagues, neighbors or friends. Many new websites that offer

carpooling solutions exploit social networks to find agreeable matches for carpools.

Another variation of a carpool is a van/bus pool, where a high passenger capacity vehicle

such as a van or bus is used to transport passengers along a certain predefined route. Van

pools are quite popular in urban areas in Sri Lanka.

Carpooling is not always arranged for the whole length of a journey. Especially on long

journeys, it is common for passengers to only join for parts of the journey, and give a

contribution based on the distance that they travel. This gives carpooling extra flexibility,

and enables more people to share journeys and save money.

Carpooling/ridesharing problem however has many challenges which need to be looked

into when implementing a solution[2]. The main challenges are flexibility, reliability and

security. Flexibility is an issue because riders in a carpool should agree to a fixed

timeframe and route and cannot differ from that afterwards. Reliability becomes an issue

mainly when setting up a carpool since if there isn’t a system with ‘critical mass’ of

participants it will be near impossible to find a plausible match for a carpool. Finally

security becomes an issue when setting up carpools with total strangers. A popular

3

solution to security issues is the setting up of carpools via connections on social media

networks.

1.4 Aim and Objectives

This research will attempt to provide an optimal and efficient multi agent based solution

to finding journey matches between passenger and driver, based on finding journey

intersections based on a map ontology. For this purpose real geospatial information will

be extracted from a geographical information system. The journey matching will be

conducted along the three aspects of spatial, temporal and social cultural requirements of

the user.The system will also be built considering the ideal user interface requirements

and will also consider situational requirements of the user. Finally the research will

provide a simulation to showcase the functionality of the system.

1.5 Outline

This thesis gives a detailed description of the research carried out towards solving the

problem of carpooling and ridesharing and achieving the above mentioned aims and

objectives. Chapter 2 covers an in depth literature review into the problem domain and

gives a study of previous research into the use of multi agent based systems in the

transportation domain. It also looks into other intelligent solutions used to solve the

ridesharing problem and conducts a brief comparison of these methods. Next, Chapter 3

focuses on the technology used to implement the solution and describes the multi agent

system technology in detail, with special emphasis placed on the tools used for

developing the multi agent system. Chapter 4 presents a detailed look into the approach

taken in the research towards implementing a multi agent based solution for the problem.

The next chapter, Chapter 5, presents the system design and a description of the system

components. Chapter 6 gives a detailed look into the system implementation and explains

the algorithms used and the system implementation using data flow diagrams and class

diagrams. The following chapter, Chapter 7 describes the methods used for system

evaluation. Finally Chapter 8 presents the conclusion of the thesis, the research

4

achievements, the issues encountered during the research process and the possibilities for

extending this research in the future.

1.6 Summary

This chapter gave a basic introduction to the research problem of developing a multi

agent system for an optimal ride sharing solution. It covered the problem definition, the

motivation and the research scope. Finally it also presented the thesis outline and a brief

description of the chapters contained in the rest of the thesis. The next chapter will

present the literature survey that covers the study of the problem and research carried out

in this area.

5

Chapter 2

Analysis of carpooling/ridesharing solutions

2.1 Introduction

This section covers previous work carried out in the area of multi agent systems for ride

sharing and carpooling. It gives an overview of research carried out in this arena. It

outlines the challenges of implementing carpooling/ride sharing systems and covers

previous research on solutions to the problem in some detail. This chapter also conducts a

comparison of the available intelligent solutions and their technologies and finally

justifies the selection of multi agent systems for this research.

2.2 Research into the challenges of carpooling and ridesharing

Carpooling is recognized as an alternative to reduce congestion and pollution on roads.

However it is often difficult to implement and sustain at city or organizational level. In

the paper ‘Making Car Pooling Work – Myths and Where To Start’[1], the researcher

clarifies some popular myths in carpooling and suggests areas where organizations can

work on to make carpooling more effective. The first myth the paper looks into is that

finding drivers and riders will increase car pooling. The research points out that such

efforts generally result in finding more riders than drivers and that even when matches

are found there is no guarantee that the car pool will actually work. The researcher

believes this is due to a missing alignment between driver and rider. The second myth

looked into is that giving money to drivers will promote car pooling. The research points

out that giving money won’t have much of an effect because drivers are often looking for

a car pool where they can switch between driving and riding (ie. someone else will drive

another day). The next myth looked into is that car pooling can be a low cost alternative

to a shuttle. The researcher identifies that organizations are likely to prefer car pooling as

a low cost alternative to setting up a shuttle service. However the researcher again points

out that shuttle riders expect a timely service, however car poolers will be dependent on

the schedule of the driver. Having debunked popular myths about car pooling the

research continues to identify steps that can be taken, especially at organizational levels

6

to promote car pooling. Some of the steps given are, to identify compatible groups with

similar commuting needs(with special attention paid to matching schedules), giving

incentives to carpoolers (some cities have separate lanes for car poolers) and register and

recognize car pools.

A variation of car pooling is dynamic car pooling, which takes advantage of the recent

and increasing adoption of Internet-connected geo-aware mobile devices for enabling

impromptu trip opportunities. Passengers request trips directly on the street and can find a

suitable ride in just few minutes. There has been some research into identifying the most

important issues against the adoption of dynamic carpooling systems and the proposed

solutions for such issues[2]. The main barriers to adaptation of a dynamic car pooling

system are identified as, poor system interface design, problems with driver-passenger

matching algorithms, aspects related to how people meet, authenticate and coordinate,

safety and trustworthiness, reaching critical mass (the amount of persons using the

system that would attract more people) and incentives[2].

In an article published about the barriers to adaptation of car pooling in India, the writer

identifies consumer behavior as the reason for reluctance for adaptation of car pooling[3].

It is stated that especially in developing countries such as India, owning a vehicle

symbolizes wealth and success and driving one’s own vehicle is generally a method in

which to establish status. The article continues to identify various aspects of modern

culture which could be a barrier to adaptation of car pooling.

A reference to car pooling as a solution to traffic congestion in Sri Lanka can be found in

the article ‘High fuel prices: Is car-pooling an option?’[4], published in the Sunday

Times. The articles looks at how car pooling can be implemented in Sri Lanka and

identifies the requirement for a computerized system to facilitate car pooling in Sri Lanka.

2.3 Solving the carpooling problem using multi agent systems

Computing ideal ridesharing plans is a challenging problem as the solution must consider

the varied and dynamically changing preferences of self-interested agents, must provide

7

compelling and fair incentives, and must be easy to use [5]. The paper ‘Collaboration and

Shared Plans in the Open World:Studies of Ridesharing’ introduces a system with three

main components, a user-modeling component that accesses and represents the

preferences of agents, an optimization component that generates collaborative rideshare

plans, and a payment component that provides incentives to agents to collaborate. The

user-modeling component employs a probabilistic timecostmodel. The model considers

as input the time of day,day of week, and sets of attributes about agents’

commitmentsdrawn from an online appointment book. Probabilisticmodels for the cost of

time and for the commitment toattend events are learned from user annotated training

datavia a machine-learning procedure based on Bayesian structuresearch. Similar

predictive models of the cost of timeand meeting commitments have been used in other

applications,including mobile opportunistic planning [6], meeting coordination [7] and

the triaging and routing of communications[8]. The second component;

optimizationcomponent takes in the set of individual desired commuteplans as inputs and

solves two difficult optimization problemsto generate a collection of collaborative

rideshare plans. The two optimizations are, generating rideshare plans for groups of

agents and clustering agents into ridesharegroups.In the third component a personal

inconvenience costthat captures several agent-specific cost factors is considered. The

personalinconvenience factors are composed to yield the cumulativevalue of a rideshare

plan. Finally the paper also included a real world trip data set study [9] which showed

increasing fuel costs as well as higher number of users increased the rideshare efficiency,

whereas increased time cost decreased the efficiency.

In the paper ‘A Matching-Algorithm based on the Cloud and Positioning Systems to

Improve Carpooling’[10] a geosocial network is exploited to improve the users’

confidence in the rides arranged with other passengers. The route calculation algorithm is

one of the key challenges of the proposed solution. The optimal solution is identified as

an NP problem, requiring to compute all the possible arrangements of rides involving all

the friends in the social network. As aconsequence, some heuristics are looked into to

make theproblem addressable.The basic idea was to exploit the Cloud to search for

differentsolutions, each of them uses a greedy approach on a differentstarting item. In

particular, the approach explores up to 50different solutions, differing in the people

8

involved in thecomputed ride. Each solution is elaborated on a differentWorker in the

Cloud. Once all of them have computed thetotal distance to cover, the best solution is

picked. More indetails, the resulting route calculation algorithm is based on the following

five steps. In the first step computes the route for the user who set-upthe trip, by invoking

the Bing Maps Web Service onhis/her starting and ending destinations. The

servicereturns the path, intended as a sequence of maneuvers. The second step defines a

circle around the starting point of the route,whose radius is defined according to the user

preferenceabout the maximum allowance for a detour. The third step looks for friends

(and then friends of friends) withinthe social network connections, whose departure

pointfall within the above defined circle. If there is a candidate, the newroute to match

friend's destination is computed. If the detour is biggerthan driver's preferences, the

friend is discarded, andanother solution is searched for. If more than one candidateis

found, the different solutions are computed on different"workers" on the Cloud,

beginning from the closer one. The search is limited to the 50 candidates whose

startingpoints are close to the driver’s one. Among all the foundsolutions, the one which

minimizes thedetour is selected. In the fourth step, if the computed detour is shorter than

the maximumallowed by the driver, the next potentialtravel-mate is considered, moving

the center on the friend's startingpoint and reducing the radius of the researchconsistently.

In the fifth step iteration is done until (I) the maximum number of passenger isreached, or

(II) the maximum detour distance has beenreached, or (III) no feasible solution is found.

In thelatter case, the system asks the user if he/she is interestedin involving unknown

people in the search.Further heuristics are included in the algorithm, suited toprefer

friends rather than friends of friends in the arrangementof the ride.

The publication ‘Genghis - A Multiagent Carpooling System’[11] gives a detailed

description of a multi agent based system for car pooling. This system like many others

solves the journey matching problem by concentrating on journey start and end points

only. It doesn’t offer a solution for partial journey matching. The system described

consisted of the following agents, UserAgent (represents a human user and their allowed

interaction with Genghis), ProxyAgentN (this agent will service HTTP requests and act

as the middleware between a Jade container and web application), JourneyRoundupAgent

(flags journeys which are past their end time for human feedback),

9

JourneyNotifyAgent(keeps watch on the wanted and active journeys and flags

UserAgents if any match comes about).

Agent based modeling (AgnBM) simulates interactions between individuals in order to

assess the effect on the society as a whole. The paper ‘Analysis of the Co-routing

Problem in Agent-based Carpooling Simulation’[12], uses AgnBM to investigate

interaction between carpooling people. The agentBased model simulates between 1000

and 5000 individuals belonging to the synthetic population generated for Flanders

(Belgium). This amount of agents is sufficient to investigate the carpooling phenomenon

and is expected to be small enough to keep the problem computationally tractable. A

social network joining the agents is built and evolves as described in [13],[14]. Small sets

of agents (typically 2 to 5) negotiate route choice and travel time in order to carpool e.g.

for commuting on a specific day of the week. Schedule execution is simulated and

introduces stochastic deviations between the actual and planned schedule versions.

Behaviourally relevant factors such as VOT (value of time) and time use flexibility are

involved. The model is used to evaluate both the effect of (a) travel-parking costs and

carpool parks availability on the overall travel demand and (b) the complexity of the

drivers cooperation process itself as an inhibiting factor (due to required schedule

adaptation). Carpooling candidates explore their social networks in order to detect

possible fellow travellers and negotiate a route (coRouting) which requires schedule

adaptation (reScheduling). Key components are exploration, negotiation (requiring

coRouting and reScheduling) and schedule execution. Those are coordinated by the

agentBased model. Rescheduling involves shifting activities (and hence travel) in space-

time using limited activity reordering and making use of VOT, disutility functions and

lists of feasible locations for actvity execution. CoRouting includes route choice and

mode selection (walk, bike, car, public transportation) and affects route duration but not

absolute time (trip start time). CoRouting and reScheduling thus are orthogonal concepts:

they can be studied independently. By negotiating, each agent tries to minimize their total

cost which is the sum of travel cost and schedule adaptation disutility cost. Each

passenger pays a weighted part of the drivers original trip distance cost plus a weighted

part of the excess generalized cost for the driver caused by trip distance and duration

increase. Both coRouting and reScheduling involve frequent solution of moderately sized

10

optimisation problems. The paper continues to detail a graph based solution to the

coRoutingsubproblem.

The paper ‘An Agent Solution to Flexible Planning and Scheduling of Passenger

Trips’[15] presents the MADARP agent architecture, devoted to the planning and

scheduling of trip requests under a dynamic scenario within the context of passenger

transportation systems. The architecture provides a set of base agents that perform the

basic interface, planning and support services for managing different types of

transportation requests by using a heterogeneous fleet of transport vehicles. The

architecture was used to implement three planning models by extending base agents’

behaviors. The results obtained for a set of 20 scenarios was then analyzed. The agent

architecture is built-up over the Jade agent platform [16], which provides a distributed

environment organized in containers where agents can work, communicate and migrate

within them. The MADARP agent architecture [17] consists of four layers that group the

agents and structures according to the functionality provided. The Interface layer

connects the system with the real world; the Planning layer performs the trips processing;

and the Service layer provides different complementary functionalities. At the bottom the

Service Ontology provides a means to integrate and make interacting the different agents

and actors from the upper layers in a transparent and coherent way. The system described

in the paper consisted of the following agents, the interface layer consisted of vehicle and

client agents. The planning layer consisted of the scheduling agent (coupled with vehicle

agent), the trip-request agent (coupled with the client agent) and the planner agent. The

service layer consisted of broker, map, account, traffic and payment agents.

2.4 Other solutions to the carpooling problem

Car pooling can be categorized into two different forms, Dynamic Car Pooling Problem

(DCPP) and Long Term Car Pooling (LTCPP). For DCPP, on each day a number of users

are available for picking up or bringing back their colleagues in that particular day. For

LTCPP, each user has to act as both a server and a client; the objective is to define user

pools where each user will pick up the remaining pool members in turn, on different days.

11

The paper ‘A Decision-Support System for the Car Pooling Problem’[18] specifically

addresses the LTCPP. It follows a three step process of data collection, clustering users to

groups and vehicle routing. The clustering mechanism works by calculating the similarity

matrix for different routes via a heuristics based pearson correlation coefficient

calculation. Once the clustering is done a genetic algorithm based solution is used to

solve the travelling salesman problem (ie. finding the optimal route) for each cluster.

The paper ‘Safe Ride’[19] considers a graph based solution to matching drivers with

passengers in a car pooling problem. Conceptually, you can think of the data structure as

a three dimensional grid with each horizontal plane representing the physical region and

the vertical dimension representing time. Each planned driver’s trip is a line through the

space, ascending through time. The space can be made into a discreet graph by choosing

five minute intervals and forcing each line to go through street intersections. Then finding

a ride for someone amounts to a solving a single-source-destination shortest path

problem. Because the graph is very sparse and other considerations, the actual data

structure is a directed graph of every intersection where a pick-up or drop-off could

occur. Permanent edges to adjacent intersections are labeled "driving", "walking",

"bicycling", etc. along with transit times. There is no third dimension; instead each node

has a time-ordered list of expected arrivals of drivers. The paper proposes that when a

driver enters, plot their route using a shortest path algorithm, allow them to modify, and

insert them in the arrival schedule at every node along the route, and when a rider enters,

find the match by performing a shortest path search in which the edges between vertices

are actual drivers traveling between those vertices at an appropriate time. The paper also

emphasizes the importance of pilots for success of a proposed system and suggests that

universities be used as pilot grounds.

The paper ‘Exploiting Graph-theoretic Tools for Matching in Carpooling

Applications’[20] gives a detailed look into a graph theory and multi agent based solution

for the carpooling problem. Here plannedperiodic trips correspond to nodes in a graph;

the edgesare labeled with the probability for success while ne-gotiating to merge two

planned trips by carpooling. Theprobability values are calculated by a learning

mechanism using on one hand the registered person and tripcharacteristics and on the

12

other hand the negotiationfeedback. The probability values vary over time due

torepetitive execution of the learning mechanism. As aconsequence, the matcher needs to

cope with a dynamically changing graph both with respect to topologyand edge weights.

In order to evaluate the matcherperformance before deployment in the real world, the

research includes a large scale agent based model. The paper describes in detail both the

exercising model and thematcher.

2.5 Summary

This chapter presented a study of previous work conducted towards implementing an

intelligent solution for the carpooling/ridesharing problem.It first looked into the various

challenges raised by the problem and into research carried out towards solving those

challenges. Next it gave a detailed study of the use of multi agent systems for

implementing a carpooling and ridesharing solution. This section covered various

previous such implementations and identified their limitations. In particular the lack of a

solution for the joint route matching problem was identified. Finally the chapter looked

into other solutions to the carpooling/ridesharing problem. These included genetic

algorithm based solutions and decision support systems. In this section the superiority of

a multi agent based system over these technologies was discussed. The following chapter

will discuss the technology used in this research and the reasons for its selection.

13

Chapter 3

Multi Agent Systems and their applications

3.1 Introduction

This section details the technology used in this research. Given that previous research in

the area of carpooling and ride sharing mechanisms was heavily based on multi agent

systems, this research also adapts a multi agent solution. This chapter gives a high level

overview on multi agent systems, their architecture and practical use cases.

3.2 Agent Definition

The definition of an agent is subject to argument, however in general an agent can be

perceived as a small computer program that activates when necessary, completes a

specific task and then terminates.

Russel&Norvig [21] group agents into five classes based on their degree of perceived

intelligence and capability.

1. Simple reflex agents

Simple reflex agents act only on the basis of the current percept, ignoring the rest of the

percept history. The agent function is based on the condition-action rule: if condition

then action.

This agent function only succeeds when the environment is fully observable. Some reflex

agents can also contain information on their current state which allows them to disregard

conditions whose actuators are already triggered.

14

2. Model-based reflex agents

A model-based agent can handle a partially observable environment. Its current state is

stored inside the agent maintaining some kind of structure which describes the part of the

world which cannot be seen. This knowledge about "how the world works" is called a

model of the world, hence the name "model-based agent".

A model-based reflex agent should maintain some sort of internal mode that depends on

the percept history and thereby reflects at least some of the unobserved aspects of the

current state. It then chooses an action in the same way as the reflex agent.

3. Goal-based agents

Goal-based agents further expand on the capabilities of the model-based agents, by using

"goal" information. Goal information describes situations that are desirable. This allows

the agent a way to choose among multiple possibilities, selecting the one which reaches a

goal state. Search and planning are the subfields of artificial intelligence devoted to

finding action sequences that achieve the agent's goals.

In some instances the goal-based agent appears to be less efficient; it is more flexible

because the knowledge that supports its decisions is represented explicitly and can be

modified.

4. Utility-based agents

Goal-based agents only distinguish between goal states and non-goal states. It is possible

to define a measure of how desirable a particular state is. This measure can be obtained

through the use of a utility function which maps a state to a measure of the utility of the

state. A more general performance measure should allow a comparison of different world

states according to exactly how happy they would make the agent. The term utility, can

be used to describe how "happy" the agent is.

A rational utility-based agent chooses the action that maximizes the expected utility of

the action outcomes- that is, the agent expects to derive, on average, given the

probabilities and utilities of each outcome. A utility-based agent has to model and keep

15

track of its environment, tasks that have involved a great deal of research on perception,

representation, reasoning, and learning.

5. Learning agents

Learning has an advantage that it allows the agents to initially operate in unknown

environments and to become more competent than its initial knowledge alone might

allow. The most important distinction is between the "learning element", which is

responsible for making improvements, and the "performance element", which is

responsible for selecting external actions.

The learning element uses feedback from the "critic" on how the agent is doing and

determines how the performance element should be modified to do better in the future.

The performance element is what we have previously considered to be the entire agent: it

takes in percepts and decides on actions.

The last component of the learning agent is the "problem generator". It is responsible for

suggesting actions that will lead to new and informative experiences.

3.3 Multi agent system implementation

Given the definition of an agent, a multi agent system can be defined as a computerized

system consisting of multiple agents within a specific environment, working towards a

common purpose. Three key features in a multi agent system are communication,

coordination and negotiation between agents.

While ad hoc multi-agent systems are often created from scratch by researchers and

developers, some frameworks have arisen that implement common standards (such as

the FIPA[22] agent system platforms and communication languages). These frameworks

save developers time and also aid in the standardization of MAS development.

http://en.wikipedia.org/wiki/FIPA

16

3.4 Multi agent system architectures

Agent architectures range from purelyreactive (or behavioural) architectures that operate

in a simple stimulus–response fashion, such asthose based on the subsumption

architecture of Brooks[23] , to more deliberativearchitectures that reason about their

actions, such as those based on the belief desire intention (BDI) model[24]. In between

the two lie hybrid combinationsof both, or layered architectures, which attempt to involve

both reaction and deliberation in aneffort to adopt the best of each approach. Thus agent

architectures can be divided into four maingroups: logic based, reactive, BDI and layered

architectures.

1. Logic-based (symbolic) architectures draw their foundation from traditional

knowledge-basedsystems in which an environment is symbolically represented

and manipulated usingreasoning mechanisms. The advantage of this approach is

that human knowledge is symbolic soencoding is easier, and they can be

constructed to be computationally complete, which makes iteasier for humans to

understand the logic. The disadvantages are that it is difficult to translate thereal

world into an accurate, adequate symbolic description, and that symbolic

representation andmanipulation can take considerable time to execute with results

being often available too late to beuseful.

2. Reactive architectures implement decision-making as a direct mapping of

situation to actionand are based on a stimulus–response mechanism triggered by

sensor data. Unlike logic-basedarchitectures, they do not have any central

symbolic model and therefore do not utilize any complexsymbolic reasoning.

Probably the best-known reactive architecture is

Brooks’ssubsumptionarchitecture[23]. The key ideas on which Brooks realized

this architecture are that anintelligent behaviour can be generated without explicit

representations and that intelligence is an emergent propertyof certain complex

systems. The subsumption architecture defines layers of finite state machinesthat

are connected to sensors that transmit real-time information.

17

3. BDI (Belief, desire, intention) architectures are probably the most popular agent

architectures[24]. They have their roots in philosophy and offer a logical theory

whichdefines the mental attitudes of belief, desire and intention using a modal

logic. Many differentagent-based systems have been realized that implement BDI

with a wide range of applications demonstrating the viability of themodel. One of

the most well-known BDI architectures is the Procedural Reasoning System

(PRS)[25]. This architecture is based on four key data structures: beliefs,

desires,intentions and plans, and an interpreter.

4. Layered (hybrid) architectures allow both reactive and deliberative agent

behaviour. To enablethis flexibility, subsystems arranged as the layers of a

hierarchy are utilized to accommodate bothtypes of agent behaviour. There are

two types of control flows within a layered architecture: horizontal[26] and

vertical layering[27].

3.5 Communication, coordination and negotiation

One of the key components of multi-agent systems is communication. In fact, agents

need to be ableto communicate with users, with system resources, and with each other if

they need to cooperate, collaborate and negotiate. In particular, agents interact with each

other by using somespecial communication languages, called agent communication

languages, that rely on speech acttheory[28]. The first agent communication language

with a broad uptake wasKQML[29]. KQML was developed in the early 1990s as part of

the US government’s ARPA KnowledgeSharing Effort. It is a language and protocol for

exchanging information and knowledge that definesa number of performative verbs and

allows message content to be represented in a first-orderlogic-like language called

KIF[30].Currently the most used and studied agent communication language is the FIPA,

which incorporates many aspects of KQML[31]. The primaryfeatures of FIPA ACL are

the possibility of using different content languages and the managementof conversations

through predefined interaction protocols.

18

Coordination is a process in which agentsengage to help ensure that a community of

individual agents acts in a coherent manner[32]. There are several reasons why multiple

agents need to be coordinated including: (1)agents’ goals may cause conflicts among

agents’ actions, (2) agents’ goals may be interdependent,(3) agents may have different

capabilities and different knowledge, and (4) agents’ goals may bemore rapidly achieved

if different agents work on each of them. Coordination among agents can behandled with

a variety of approaches including organizational structuring, contracting, multi-

agentplanning and negotiation.

Organizational structuringprovides a framework for activity and interaction through the

definitionof roles, communication paths and authority relationships[33]. The easiest way

ofensuring coherent behaviour and resolving conflicts seems to consist of providing the

group withan agent which has a wider perspective of the system, thereby exploiting an

organizational or hierarchicalstructure. This is the simplest coordination technique and

yields a classic master/slave orclient/server architecture for task and resource allocation

among slave agents by a master agent. Themaster controller can gather information from

the agents in the group, create plans and assign tasksto individual agents in order to

ensure global coherence. However, such an approach is impracticalin realistic

applications because it is very difficult to create such a central controller, and in anycase,

centralized control, as in the master/slave technique, is contrary to the decentralized

natureof multi-agent systems.

An important coordination technique for task and resource allocation among agents and

determiningorganizational structure is the contract net protocol[34]. This approachis

based on a decentralized market structure where agents can take on two roles, a manager

and contractor.The basic premise of this form of coordination is that if an agent cannot

solve an assignedproblem using local resources/expertise, it will decompose the problem

into sub-problems and tryto find other willing agents with the necessary

resources/expertise to solve these sub-problems.The problem of assigning the sub-

problems is solved by a contracting mechanism consisting of:(1) contract announcement

by the manager agent, (2) submission of bids by contracting agents inresponse to the

19

announcement, and (3) the evaluation of the submitted bids by the contractor, whichleads

to awarding a sub-problem contract to the contractor(s) with the most appropriate bids.

Another approach is to view the problem of coordinating agents as a planning problem.

In orderto avoid inconsistent or conflicting actions and interactions, agents can build a

multi-agent planthat details all the future actions and interactions required to achieve their

goals. Multi-agent planning can be either centralizedor distributed. In centralized multi-

agent planning, there is usually a coordinating agent that, onreceipt of all partial or local

plans from individual agents, analyses them to identify potentialinconsistencies and

conflicting interactions (e.g. conflicts between agents over limited resources).The

coordinating agent then attempts to modify these partial plans and combines them into a

multiagentplan where conflicting interactions are eliminated[35]. In distributed multi-

agentplanning, the idea is to provide each agent with a model of other agents’ plans.

Agents communicatein order to build and update their individual plans and their models

of other agents until all conflictsareremoved[36].Partial global planning integrates the

strengths of the organizational, planning, and contractingapproaches by uniting them into

a single approach[37]. The goal of thisapproach is to gain the multi-agent planning

benefits of detailed, situation-specific coordinationwhile avoiding excessive computation

and communication costs. This is possible because the jointlyknown organizational

structures effectively prune the space of possible plans to keep the problemtractable.

Negotiation is probably the most relied upon technique for coordinating agents. In

particular,negotiation is the communication process of a group of agents in order to reach

a mutually acceptedagreement on some matter[38]. Negotiation can be competitive or

cooperativedepending on the behaviour of the agents involved. Competitive negotiationis

used insituations where agents have independent goals that interact with each other; they

are not a prioricooperative, share information or willing to back down for the greater

good. Cooperative negotiationis used in situations where agents have a common goal to

achieve or a single task to execute.In this case, the multi-agent system has been centrally

designed to pursue a single global goal.

20

3.6 JADE (Java Agent Development Framework)

JADE is a FIPA compliant agent development framework written in Java. It is available

as open source software and is the popular choice in multi agent system development,

therefore it is chosen as the implementation framework for this research project. JADE is

a middleware that facilitates the development of multi-agent systems. It includes aruntime

environmentwhere JADE agents can “live” and that must be active on a given host before one or

more agents can be executed on that host, a libraryof classes that programmers have to/can use

(directly or by specializing them) to develop their agents. A suite of graphicaltoolsthat allows

administrating and monitoring the activity of running agents.

Each running instance of the JADE runtime environment is called a Containeras it can

contain several agents. The set of active containers is called a Platform. A single special

Main containermust always be active in a platform and all other containers register with

it as soon as they start.

Besides the ability of accepting registrations from other containers, a main container

differs from normal containers as it holds two special agents (automatically started when

the main container is launched). The AMS(Agent Management System) that provides the

naming service (i.e. ensures that each agent in the platform has a unique name) and

represents the authority in the platform (for instance it is possible to create/kill agents on

remote containers by requesting that to the AMS). The DF(Directory Facilitator) that

provides a Yellow Pages service by means of which an agent can find other agents

providing the services he requires in order to achieve his goals[23].

3.7 MAS in Traffic and Transportation

‘Applications of multi agent systems in traffic and transportation’[40] describes

applications of MAS in traffic and transportation, beginning with an overview on AOT

(Agent Oriented Techniques) and the BDI paradigm. The areas identified where MAS

will have an impact are in the analysis and description of traffic systems, increasing the

autonomy of traffic components and an integration framework (for example an

21

Emergency Rescue Management centre that links up accident, pollution and decision

support modules). The DASEDIS architecture is described to model traffic, based on a

BDI model. We see models of agent behaviour when cars have to overtake each other and

free driving. Carsharing is covered, where agents represent stations and customers. Other

than these details, aspects of methodology are not covered.

3.8 Summary

This chapter gave a detailed look into the selection of the technology used for this

research, which is multi agent based technology. Here the various aspects of multi agent

based systems were identified. In particular the different multi agent based system

architectures available were discussed and a suitable system architecture was chosen.

Finally an implementation framework for the system was chosen based on the selected

multi agent system architecture. The next chapter presents an over view of the approach

taken towards solving the carpooling/ridesharing problem using the selected multi agent

based technology.

22

Chapter 4

Solving complexity using a multi agent system

4.1 Introduction

This gives a detailed description on the approach taken to solve the research issue of

implementing a ridesharing/carpooling system in Sri Lanka. As identified in the

‘Technology’ chapter, the solution is a multi-agent system based approach.

4.2 Hypothesis

The proposed solution is to implement a multi agent system that can match users for

rideshares and carpools on the system. An agent based solution is considered to be

effective due to the complexity of the problem, since it is required to match based on time

(temporal) and route (spatial) requirements. In addition personal preferences must also be

considered. A multi agent based system would be able to provide the three key elements

required for the success of a ride sharing/carpooling system. Those are communication,

negotiation and coordination among the drivers and the passengers. In particular this

solution will look towards implementing an algorithm/logic that considers the travel

routes/roads much the same way in which a human will try to solve the problem as

opposed to considering only location points. The idea is to find overlapping routes of

users and accordingly establish optimal rideshares or carpools. Optimality is measured

based on the total travel distance of the shared route. A rideshare with a higher route

coverage is considered more optimal than a ride share with lesser route coverage.

4.3 System requirements and features

A carpooling/ridesharing solution for Sri Lanka should meet the following requirements,

23

- Allow users to register on the system and provide their details. A user will specify

whether they are looking for a rideshare or carpool. Carpools can only be

established between users who are vehicle owners.

- Allow users to setup trips on the system specifying start and destination and

expected departure and arrival times. They should also be able to schedule

recurring trips on the system.

- Allow users to specify their required ride on the system and find a match from the

pool of registered user routes on the system.

- Display overlays of paths on a map when journey matches are found.

4.4 Solution overview

Input

The system input is twofold. Firstly there is the user input data. In this case the input is

the user details and the planned journey details. The user details includes basic user

information, their social connection (to other users) and most importantly whether they

are registering as a driver or as a passenger on the system. A passenger can be identified

as a user who does not own a vehicle and is only looking for a rideshare. A driver on the

other hand can be identified as a user who owns a vehicle and therefore can participate in

both rideshares and carpools. In addition user input also included the specific planned

journeys of the users. The journey information is both spatial and temporal. Spatial

information is simply given as the start, end locations (addresses) of the journeys. The

temporal information is simply the planned departure and arrival times for the journeys.

The second input type is the map data or geolocation data that is retrieved from the

Google Maps API. This information is based on the planned journey inputs given by the

users. The Google Maps API is accessed and the relevant geo location data for theses

journeys are retrieved via the API. This geolocation data consists of latitude and

longitude points that lie along the routes given as expected journeys. The Google Maps

24

API returns this information encoded as polylines in order to compress the returned

amount of data.

Output

The system output would be the corresponding driver matches for a passenger user. This

output will be depicted as the number of overlapping routes between the specific

passenger and other registered driver users. The results can be ranked based on social

connections with drivers having closer social connections to passengers having a higher

ranking. The available matches are displayed on a map so that the passenger has a quick

overview of all driver options available for a journey.

Process

The process of converting the system inputs into the desired output is based on the multi

agent system architecture of the system. First the system interface layer will receive the

user inputs and propagate them to the agent and ontology layers. The agent layer will

consist of the corresponding agents who will model driver and passenger agents. It will

also consist of the route match and maps agents who will process journey match requests

using the route match algorithm and geo location data for the specific routes. When

required the agent layer will interact with the ontology layer to retrieve the information

necessary for the route match process. Once the process completes the results can then be

displayed to the system users as the system output.

4.5 Summary

This chapter gave a description on the approach taken in this research to solve the

carpooling/ride sharing problem in the country. It gave a detailed description of the

research hypothesis and the system input, output and process. It paves the way for the

next chapter which describes the system design based on the solution approach.

25

Chapter 5

Design

5.1 Introduction

This section details the solution design. It gives the design of the overall system and its

architecture. In particular in identifies the system modules and explains the system use

cases. This chapter is precedes the chapter giving the system implementation and

therefore sets the foundation towards the system implementation.

5.2 System layered architecture

The system has three layers. The interface layer is a web based interface where users can

register and enter their route details. The interface layer closely interacts with the agent

layer. The agent layer consists of passenger, driver and route match agents. Here a

passenger agent will send call for proposals to the driver agents. The driver agents will

then contact a route match agent to check if the journey schedule, routes and personal

preferences match. If a match is possible the route match agent will inform this to the

driver agent. The driver agent will then reply back to the passenger agent proposing or

rejecting a ride-share. The final layer is the ontology layer consisting of the map module,

data store and social network module. This layer is contacted by the agents in the agent

layer to get the information they need to function. Figure 5.1 given below presents the

layered architecture of the system.

26

Figure 5.1: System architecture

5.3 Interface Layer

The interface layer consists of the user registration page and the journey scheduling page

which includes a Google Map view which will display the scheduled and matched

journeys to the user.

5.4 Agent Layer

• Passenger Agent: The passenger agent represents a system user who searched for

a journey match as a passenger. The task of the passenger agent is to send

requests for proposals to all driver agents.

• Driver Agent: The driver agent represents a system user who is offering a ride or

looking for a car pool on the system. The task of the driver agent is to accept

proposals from a passenger agent and to respond to that proposal based on

whether or not the proposal can be met. The driver agent does this by sending out

requests to the route match agent to determine if the passenger’s route is a match

to the driver’s route.

• Route Match Agent:This agent is the brain behind the system. It uses the route

matching algorithm to determine if the routes of a passenger and driver agent

match. It responds back to the driver agent acknowledging or denying the match.

27

• Map Agent:This agent fetches route information needed by the route match agent

by calling the Google Maps API. The retrieved route information is then passed

back to the calling route match agent.

5.5 Ontology Layer

• Map Module: The map module connects with the Google Maps Directions API

webservice to retrieve route information required for determining route matches. Here

each passenger’s or driver’s start and destination information is used to fetch the geo

coded location points (latitude, longitude pairs) of their routes. This information can

then be fed to the Route Match Agent for finding journey matches.

• Social Network Module: The social network module connects with a social network

to determine the social connections between the driver and passenger agents and

thereby contributes to the security and reliability of the carpooling system. Here

Facebook is considered to be the ideal social network since it is widely used across all

generations in Sri Lanka. The social network module can either be connected with

Facebook or can simulate social connections for the purpose of a carpooling

simulation. In case of such a simulation a fair assumption of each passenger or driver

agent having between 1-5 connections with other agents is considered.

• Data Store Module:This module acts as the data storage for the system. Given below

in Figure 5.2 is the system database diagram.

28

Figure 5.2: Database Diagram

The system database consists of four entities. The user entity table is used for storing all

user information. This includes both driver and passenger users. A field ‘isDriver’ is used

for the purpose of differentiating driver users from passenger users. The next entity is the

routepath entity. This table tracks the journey routes for each user. It store the spatial and

temporal data corresponding to each journey. The route table on the other hand stores

specific route information such as geo location coordinates for a specific route. The final

entity, the social link entity gives the social connection between system users.

5.6 System activity diagrams

Given below are the system activity diagrams. In these activity diagrams the system users

are modelled as agents and the interactions between these agents are depicted. In a

traditional activity diagram the users depicted are the actual system users only. However

here it is required to show the interactions between different agents in the system.

29

Activity 1

The below activity diagram Figure 5.3 depicts a user adding a journey into the system as

a driver.

Figure 5.3: Store driver journey in system

This activity diagram shows how the interface agent is activated upon user request. The

interface agent then forks off two processes. The first process activates a datastore agent

who stores the user data in the system and the second process generates a driver agent

corresponding to the user who registered as a driver on the system.

30

Activity 2

A passenger requests a journey on the system. Here two tasks are executed in parallel.

The journey is stored on the system and the system is searched for a driver who can fulfil

the request.

Figure 5.4: Store passenger journey in system

The flow of this activity is similar to that of the driver registration process. The only

point of divergence is when the passenger agent is created a route match request is

generated and sent to all driver agents currently active in the system.

31

Activity 3

This activity depicts the search for a journey match.

Figure 5.5: Journey match process

The journey match process runs between the passenger, driver, route match and maps

agents. Although the process is sequential as per the activity diagram, since there are

multiple passenger and driver agents in the system at any given time the same process

runs parallel amongst the existing agents in the system. The process starts when a driver

32

agent receives a match request from a passenger agent. The driver agent then sends out a

request to the route match agent to determine if the passenger is a compatible match. On

receiving this request the route match agent sends out a corresponding request to the

maps agent. The map agent uses the information received to retrieve the relevant route

information from the maps ontology which is achieved via the Google Maps API. This

information is then passed on to the route match agent. The route match agent then uses

the information received to conclude whether the respective routes of the passenger and

driver agent match. The route match agent then sends out a response to the driver agent

confirming or refuting the match. The driver agent then send the appropriate response out

to the passenger agent. As mentioned before this process happens in parallel between the

different agents in the system based on the incoming passenger requests.

5.7 Summary

This section covered the system design. It presented the layered architecture of the

system and a description of each layer and the modules and components of those layers.

It also presented the system activity diagram and an explanation of the system activity

flow.The proceeding chapter describes the system implementation in detail.

33

Chapter 6

Implementation

6.1 Introduction

This section details the project implementation. It explains in detail the system algorithm

and the system implementation using JADE. This chapter closely relates to the previous

chapter on system design.

6.2 Interface module implementation

The interface module is the system interface. It is developed as a Java web application.

This allows it to seamlessly communicate with the backend JADE implementation of the

agent layer. The system interface is built using HTML/CSS/JSP/Javascript scripting and

webpage technologies. In addition it also utilizes the Google Maps Javascript API to

render map views in the interface. This allows users to view matched journey routes on a

map of the Western Province of Sri Lanka.

6.3 Agent layer implementation

The system agent layer is built by extending the JADE agent implementation. As

mentioned in the design chapter the main agent types in the system are driver agents,

passenger agents and route match agents. Note that there can be multiple of these types

of agents interacting at any given time in the system.

6.4 JADE agent behaviors

When implementing the agents it was required to follow predefined JADE agent

behaviours for the purpose of implementing the functionality of specific agents. Given

next is a description of these agent behaviours and the details of the corresponding agents

that implemented these behaviours and the functional requirement for the

implementation.

34

An agent can execute several behaviours concurrently. However it is important to notice

that scheduling of behaviours in an agent is not pre-emptive (as for Java threads) but

cooperative. This means that when a behaviour is scheduled for execution its action()

method is called and runs until it returns. Therefore it is the programmer who defines

when an agent switches from the execution of a current behaviour to the execution of the

next one. Though requiring a small additional effort to programmers, this approach has

several advantages.

• Allows having a single Java thread per agent (that is quite important especially in

environments with limited resources).

• Provides better performances since behaviour switch is extremely faster than Java

thread switch.

• Eliminates all synchronization issues between concurrent behaviours accessing the

same resources (this speed-up performances too) since all behaviours are executed by the

same Java thread.

• When a behaviour switch occurs the status of an agent does not include any stack

information and is therefore possible to take a “snapshot” of it. This makes it possible to

save the status of an agent on a persistent storage for later resumption.

The agent behaviours modelled in the system are Cyclic Behaviour, Sequential Behaviour

and SimpleBehaviour. Cyclic Behaviour is exhibited by the Passenger Agent who needs

to periodically check for matching driver agents in the system until a suitable match is

found. Sequential Behaviour is used to model the Driver Agents and the Route Match

Agents who need to receive a message, send a request to another agent, wait for a

response from that agent and then finally send back a response to the initial calling agent.

The Map Agent on the other hand can be modelled with a simple behaviour. A sequence

diagram detailing how the agent behaviours interact is given below.

35

6.5 System agents

Figure 6.1: Flow of agent behaviour

The system consists of agents of type driver, passenger, route match agent and map

agent. The flow of agent behaviour among a set of these agents is depicted in Figure 6.1.

Here the initial CFP (Call For Proposals) is sent by the passenger agent. On receiving this

CFP the driver agent then sends out a request to the route match agent to check if the

driver and passenger routes match. The route match agent then sends out a request to the

map agent to retrieve the geo location information required to run the route match

algorithm. On receiving this information the route match agent runs the route match

algorithm and returns the obtained results to the driver agent via an inform message. The

driver agent then processes this message and sends an accept or reject response to the

passenger agent.

Given below is the pseduocode for the sequential behaviour exhibited by the driver

agents (DriverSequentialBehaviour) and the cyclic behavior exhibited by the passenger

agents.

36

37

38

6.6 Route Match Agent Algorithm

The route match agent interacts with the driver and passenger agent in order to determine

the route overlaps in the communication setup between a single driver and passenger

agent. In order to do so, each route match agent uses the route match algorithm described

below.

A match is found between a driver (person offering a ride) A and passenger B (person

joining the ride) by determining whether their routes overlap. Consider as an example

driver A, who is travelling from Moratuwa to Kelaniya and passenger B who needs to

travel from Ratmalana to Colombo around the same time. Since B’s route intersects with

A’s route (for travel via the Galle Road), if A was registered on the system, then B could

find A on the system and setup the shared ride.

Steps in the route match algorithm:

I. Using Google Maps Directions API, encode the two routes of A and B into lists of geo

location data.

II. Find the point P on A’s route, which is closest to the start location of B. This will be

the point where B can join A’s trip. Use the haversine formula to calculate distance

between points. If no point can be found within 1km proximity (threshold value), then

terminate concluding routes don’t overlap).

39

Figure 6.2:Haversine formula

III. Taking A’s route and starting from point P, iterate through B’s location points from

start point, and calculate the distance between the corresponding location point pairs.

Each location point on A that is within 1km (threshold value) proximity to B’s location

point is marked as a route overlap point .When no overlap is found, it is concluded that

the routes do not overlap beyond this point.

IV. Repeat above process for all possible alternative routes for A and B until longest

overlap route, if any, is found.

 The above algorithm can also be used to setup carpools by finding route overlaps

from start to destination within a required threshold value (e.g. routes that overlap from

start to destination with 5-10km difference).

40

Figure 6.3: Finding journey overlap

6.7 Ontology layer implementation

The ontology layer of the system consists of the datasource, social and maps modules.

The implementation of each of these modules is discussed next.

6.8 Database layer implementation

The datasource module of the system connects with a backend mysql database to read

and write data. It acts as the ontology for the agents in the system. The backend database

is used to store user information. It is also used to store the geospatial information

extracted for user routes, especially since fetching this data using the Google Maps API is

a network intensive operation.

6.9 Social network module

The social network module also connects with the backend system database. However it

only is aware of the social connection information of the user agents. It tracks the first

and second degree connections of all the agents in the system. This information is then

made available to the passenger and driver agents so that they filter their search based on

the social connections that they wish to maintain. For the purpose of this research social

41

connection data is generated by randomly pairing users in the system to establish social

networks.

6.10 Maps data Layer

The maps module retrieves all the geospatial data required for establishing a route match.

For this purpose it uses the Google Maps API which returns route information as encoded

polylines. The algorithm for encoding polylines is described below. The reverse of this

process is used as the polyline decoder in the route match algorithm.

Encoded polylines store two types of encoded information for any given set of points: the

latitude and longitudes of those points, and the maximum zoom levels to display these

points. Levels are encoded using unsigned values, while point coordinates need to use

signed values, so the encoding process is slightly different for each case. This process is

noted below.

The encoding process converts a binary value into a series of character codes for ASCII

characters using the familiar base64 encoding scheme: to ensure proper display of these

characters, encoded values are summed with 63 (the ASCII character '?') before

converting them into ASCII. The algorithm also checks for additional character codes for

a given point by checking the least significant bit of each byte group; if this bit is set to 1,

the point is not yet fully formed and additional data must follow.

Additionally, to conserve space, points only include the offset from the previous

point (except of course for the first point). All points are encoded in Base64 as signed

integers, as latitudes and longitudes are signed values. The encoding format within a

polyline needs to represent two coordinates representing latitude and longitude to a

reasonable precision. Given a maximum longitude of +/- 180 degrees to a precision of 5

decimal places (180.00000 to -180.00000), this results in the need for a 32 bit signed

binary integer value.

42

Note that the backslash is interpreted as an escape character within string literals. Any

output of this utility should convert backslash characters to double-backslashes within

string literals.

The steps for encoding such a signed value are specified below.

1. Take the initial signed value:

-179.9832104

2. Take the decimal value and multiply it by 1e5, rounding the result:

-17998321

3. Convert the decimal value to binary. Note that a negative value must be calculated

using its two's complement by inverting the binary value and adding one to the result:

00000001 00010010 10100001 11110001

11111110 11101101 01011110 00001110

11111110 11101101 01011110 00001111

4. Left-shift the binary value one bit:

11111101 11011010 10111100 00011110

5. If the original decimal value is negative, invert this encoding:

00000010 00100101 01000011 11100001

6. Break the binary value out into 5-bit chunks (starting from the right hand side):

00001 00010 01010 10000 11111 00001

7. Place the 5-bit chunks into reverse order:

00001 11111 10000 01010 00010 00001

8. OR each value with 0x20 if another bit chunk follows:

100001 111111 110000 101010 100010 000001

9. Convert each value to decimal:

33 63 48 42 34 1

10. Add 63 to each value:

96 126 111 105 97 64

11. Convert each value to its ASCII equivalent:

`~oia@

http://en.wikipedia.org/wiki/Two%27s_complement

43

An encoded polyline also stores information specifying the precision when drawing the

polyline. This information allows the map to ignore drawing segments at zoom levels

where that precision is not necessary. Each point in an encoded polyline stores this

information in a levels string which is also encoded alongside the encoded points.

The steps for encoding an unsigned value are specified below:

1. Take the initial unsigned value:

174

2. Convert the decimal value to a binary value:

10101110

3. Break the binary value out into 5-bit chunks (starting from the right hand side):

101 01110

4. Place the 5-bit chunks into reverse order:

01110 101

5. OR each value with 0x20 if another bit chunk follows:

101110 00101

6. Convert each value to decimal:

46 5

7. Add 63 to each value:

109 68

8. Convert each value to its ASCII equivalent:

mD

6.10 Implementing the application using JADE

The application was implemented using JADE version 4.3. Given below is application

server the system specification and the software specifications used,

• PC running Ubuntu 12.10 (32bit) with 3GB RAM

• Java version 1.7 (Open JDK)

44

• Java servlet version 3.1

• JADE version 4.3

• Mysql database version 5.5.31

• Mysql connector for java 5.1.3

• Apache tomcat v7 server

• Google Maps API v2

• Eclipse 4.3 IDE for development

The application is built as a hybrid of a web application and agent application. The

application interface is web based and the backend operations are performed by agents

running over the JADE agent platform.

6.11 Summary

This section covered the system implementation. It explained the route match algorithm

and the system implementation in detail using JADE. It also gave a detailed look into the

JADE agent behaviours implemented by the system. The following chapter describes the

system evaluation.

45

Chapter 7

Evaluation

7.1 Introduction

This section describes the system evaluation process. Here we first look at the process

involved in evaluating the system and look at multi agent simulation aspects. Finally a

description of the system evaluation based on the multi agent simulation process is given.

7.2 Evaluating the route match algorithm

The probability of a passenger finding arideshare on the system is dependent on four

aspects.

Pt – The probability that the journey schedule of the passenger and driver match

Pr – The probability of finding a match based on the route only

Ps – The probability of a rideshare or carpool being established between two agents

will depend on their social connection.
N - The number of registered drivers on the system

The value of Ptwill vary depending on the time of day during which the journey is

scheduled. For instance, there is higher probability of finding a rideshare during rush

hours (morning/evening) since there will be more people driving to/from work during

these times.

The second factor is the route. If the route lies within the city in a highly urban area Pr

will be higher. Also Pr will be higher for longer routes because it increases the chances of

partial journey matches.

46

The third factor to be considered here is the social connection, Ps.This is based on

whether or not the driver and passenger agents are in each other’s social circle.

The fourth and final factor will be the number of registered drivers on the system. The

value of Nhas been proven to have a deciding impact on the success of a carpooling

system [19]. Based on the above factors we can depict the probability of a user finding a

match on the system, Pmatch as follows,

Pmatch= [1 – (1 – PtPrPs)N]

In a real life scenario the route match algorithm can be evaluated based on the above

factors. However it is difficult to simulate the exact real life travel scenario. There for we

look at the possibilities for simulating this scenario in a multi agent system.

7.3 MAS simulation

The reasons for using simulations in MAS are twofold. (1) The deployment of the system

in a real running context would have been costly and (2) real-world experiments cannot

be entirely controlled so that they do not ease the development process, as they include

irrelevant noise in it.

Several problems remain with these approaches considering the modeling of complex

systems which involve individual entities [41]:

• Only a global perspective is possible

• Equation parameters hardly take into account the complexity of micro-

level interactions

• The modeling of individual actions is not possible

• Integrating qualitative aspects is hard

There are many approaches taken towards simulating a multi agent system for the

purpose of evaluation. Some of these approaches are considered next.

47

7.4 Simulation results

The system built to simulate the rideshare process was used to obtain the below results.

The results are the optimal route pairings retrieved for 50 simulated users. Details of the

users and their routes are presented in the Appendix C and should be referenced for a

clearer understanding of the result data. The results are presented as the best match for

rideshares between users and the total distance (km) covered in the rideshare.

User1 User2 Rideshare Distance(km)

user8 user9 26.17697656

user22 user23 13.47713173

user7 user24 13.33175753

user16 user19 10.01011473

user45 user41 9.749212024

user27 user28 8.645607179

user25 user42 7.279461059

user36 user12 6.770474731

user40 user41 6.467655213

user3 user2 6.336811231

user21 user35 6.255478447

user5 user6 4.869353604

user47 user48 4.215451781

user29 user38 4.113393987

user37 user11 3.883131685

user10 user14 2.795748377

user33 user34 2.022473248

Table 7.1: Optimal rideshares established for 50 users.

48

A total of 17 matches were found for the simulated users when evaluating for 50 users.

The list below presents the change in number of matches found when using 10, 20, 30, 40

and 50, 60, 70, 80 and 100 users respectively for the simulation.

No. of users Rideshares established

10 3

20 5

30 9

40 13

50 17

60 19

70 23

80 28

90 31

100 34

Table 7.2: Number of rideshares against number of simulated users.

Figure 7.3: Rise in number of optimal rideshares with number of simulated users.

0

5

10

15

20

25

30

35

40

10 20 30 40 50 60 70 80 90 100

Shared Rides

Shared Rides

49

In order to establish carpools we look at all the possible rideshares that can be established

between the user agents instead of only the optimal ones. Then a simple clustering

algorithm can be applied to determine the possible carpools. A user agent pool of 100

was used in order to establish carpools since the possibility for carpools is much lower

than the possibilities for rideshares because here a distance constraint is applied so that all

user routes should lie within the same area. A maximum of 5km difference is allowed in

order to reach acceptable results. The user agent pool is limited to 100 due to data

constraints.

User1 User2 Rideshare Distance(km)

user8 user9 26.17697656

user22 user58 14.16150523

user22 user23 13.47713173

user7 user24 13.33175753

user22 user61 12.95906731

user16 user19 10.01011473

user7 user21 9.796667528

user27 user28 8.645607179

user74 user75 8.109333947

user26 user27 7.550970942

user26 user28 7.011995371

user78 user77 6.870268775

user67 user68 6.713441579

user67 user66 6.642564947

user68 user66 6.642564947

user3 user2 6.336811231

user21 user35 6.255478447

user75 user73 5.883826038

user4 user16 5.02370013

50

user43 user27 4.892435585

user43 user28 4.892435585

user6 user30 4.729175865

user70 user71 4.68626914

user55 user27 4.553465201

user55 user28 4.553465201

user26 user43 4.390089892

user47 user48 4.215451781

user26 user55 4.142660165

user50 user51 3.913976476

user16 user52 3.385574099

user1 user63 2.482907823

user20 user15 2.33398481

user46 user47 2.257422275

user1 user62 2.255909816

user33 user34 2.022473248

Table 7.3: All possible dual member carpoolsfor 100 users.

Based on the above data the following carpools were established for the 100 user agents,

User Route Start Route End

user22

Danister de Silva Mawatha,

Colombo 08 Athurugiriya RD, Homagama

user23

155,Bandaranayeke Mawatha,,

Colombo-12 Athurugiriya RD, Homagama

user58 Temple Road, Maradana 01000 Court Road, Homagama

user61 45, Husseiniya, Colombo 12 Athurugiriya RD, Homagama

Table 7.4: Carpool found with 4 users.

51

User Route Start Route End

user26
Auburn Place, Dehiwala
 Kynsey road, Colombo 08

user27

Templer's Road, Mount

Lavinia Kynsey road, Colombo 08

user28

Templer's Road, Mount

Lavinia

62, Gregory's Road,,

Colombo 07

Table 7.5: Carpool found with 3 users.

User Route Start Route End

user66

Court Road, Homagama Ministry of Education,
Pelawatta

user67

Athurugiriya RD,

Homagama 10200

Ministry of Education,
Pelawatta

user68

habarakada, homagama Ministry of Education,
Pelawatta

Table 7.6: Carpool found with 3 users.

The above data clearly shows the need for a large number of users in order to

successfully establish carpools of size > 2.

7.5 Summary

This section covered the system evaluation. It presented an evaluation of the route match

algorithm and then presented various methods for evaluating a multi agent based system

using simulation. Finally it presented the multi agent features of the system and the

results from the system simulation. The next chapter presents the research conclusion.

52

Chapter 8

Conclusion

8.1 Introduction

This chapter follows the project evaluation and presents the final outcome of this research

project. It discusses the issues that were faced during the carrying out of this research and

finally lists the opportunities available to expand on this research.

8.2 Conclusion

When evaluating the success of the project what must be considered is the objectives that

were set during the onset of the project. The objectives that were initially listed in the

project proposal are given below for reference,

Project Objectives:

• Provide a system that gives a car pooling solution for registered users

• Provide a system that provides ride sharing option

• Provide the system users with best solutions based on their route requirements,

time requirement and personal preferences.

• Provide a safe and social car pooling/ride sharing system

• Provide a user friendly and personalized solution

The primary objectives were to build a system that would provide an effective solution to

the car pooling and ride sharing problem. The solution provided was also expected to be

personalized and was expected to exactly fit the time and route requirements of the user

who will act as the passenger. When considering the outcome of the project it can be

concluded that the initial project requirements have been met successfully. However in

terms of user experience the system built has much room for improvement. Although not

53

listed above one of the main requirements of this project was to successfully complete a

research on the use of a multi agent system to solve the joint ride sharing and car pooling

problem. In that sense the project has been a success.

When considering the requirement for social connectivity the project does not provide a

full solution since as a research project connecting to a real live social platform will result

in unnecessary noise and distraction to the initial research. Therefore instead attempts

were made to simulate social connection amongst the system users and to use these

simulated connections to evaluate the impact on the emergent properties of the multi

agent system.

Many difficulties arose during the implementation of the project. The main issue that was

faced was the requirement to connect the system web interface with the JADE agent

container. The solution that I used to solve the problem was to implement the web

interface as a JAVA servlet in separate package inside the JADE project. The servlet

code could then call the JADE agent code.

With respect to the system web interface there was also the requirement of displaying the

route match results to the user. Since the system runs the route match process

asynchronously and because route match results vary over time (depending on changes to

the system and the environment) I decided to use a separate page to list the route match

results. Initially it was planned to implement a mobile based notification system to notify

the users of the route match results. However due to the complexity involved in

integrating the web interface with the JADE container I later decided not to implement

the notification module. Therefore the notification module will be listed under future

work for this project.

Yet another difficulty faced during the implementation was the requirement to connect

the system to a persistent database for data storage and retrieval. This was achieved by

utilizing a java mysql connector package and a dedicated DatabseAgent who will handle

all connections to the database and respond to datastore resource requests coming from

other agents.

54

Building the route matching algorithm for the system also took considerable time and

effort especially since although the past literature provided numerous algorithmic and

non algorithmic ways for solving the car pooling and ride sharing problem, non of these

solutions dealt in detail with solving the overlapping route requirement.

Implementing the agent behaviors for the system also proved to be a tough challenge

especially since there were multiple asynchronous messaging process that in certain cases

needed to be aligned so that requests and responses would flow in the correct order. I

solved these requirements by implementing different JADE agent behaviour models for

the agents as per their requirements.

Another main concern during the project implementation was the source for reliable

geographic data. I selected Google Maps API as the source for geographic data since it

has an open API that supports numerous functions including alternative route retrieval,

reverse geocoding and distance matrix calculation.

Finally it can be concluded that the project was successful to a level that at least three

quarters of its objectiveswere achieved. Work that was not successful will be considered

as future work and listed below.

8.3 Future work

Much of the focus in this research was on the implementation of the multi-agent based

solution for carpooling and the journey matching algorithm. There also are many

possibilities for improving the solution based on personal and social preferences. Further

improvements to this research would lie in this area and would describe the role that

social and cultural connections play in the implementation of a carpooling solution. Also

the project evaluation was conducted by utilizing rather small scopes of agents (in the

order of tens). A more detailed analysis could be carried out by using more complex

scopes and variables.

55

8.4 Summary

The chapter concludes this research project by presenting a discussion on the overall

outcomes of this project. It ties together the research description given in the literature

review, technology, approach, design, implementation and evaluation chapters. It also

outlines the various issues that were faced during the implementation of the project. In

conclusion it also lists the future work for this research.

56

References

[1] Srivastava, B. (2012). Making Car Pooling Work–Myths and Where to Start.In 19th

ITS World Congress.

[2]Graziotin, D. (2013). An Analysis of issues against the adoption of Dynamic

Carpooling.arXiv preprint arXiv:1306.0361.

[3] Why carpooling will never work in India - YourStory.com. (2013, May). Retrieved

January 25, 2014, from http://yourstory.com/2013/05/carpooling-will-fail-in-india/

[4] High fuel prices: Is car-pooling an option? (2011, December 11). Retrieved from

http://www.sundaytimes.lk/111211/BusinessTimes/bt09.html

[5] Kamar, E., & Horvitz, E. (2009, July). Collaboration and Shared Plans in the Open

World: Studies of Ridesharing. In IJCAI (Vol. 9, p. 187).

[6] Kamar, E., Horvitz, E., & Meek, C. (2008, May). Mobile opportunistic commerce:

mechanisms, architecture, and application. In Proceedings of the 7th international joint

conference on Autonomous agents and multiagent systems-Volume 2 (pp. 1087-

1094).International Foundation for Autonomous Agents and Multiagent Systems.

[7] Horvitz, E., Koch, P., Kadie, C. M., & Jacobs, A. (2002, August). Coordinate:

Probabilistic forecasting of presence and availability. In Proceedings of the Eighteenth

conference on Uncertainty in artificial intelligence (pp. 224-233). Morgan Kaufmann

Publishers Inc..

[8] Horvitz, E., Koch, P., Sarin, R., Apacible, J., &Subramani, M. (2005). Bayesphone:

Precomputation of context-sensitive policies for inquiry and action in mobile devices. In

User Modeling 2005 (pp. 251-260).Springer Berlin Heidelberg.

[9] Krumm, J., & Horvitz, E. (2005). The Microsoft multiperson location survey.

Microsoft ResearchTechnical Report.

[10] Di Martino, S., Galiero, R., Giorio, C., Ferrucci, F., &Sarro, F. (2011). A Matching-

Algorithm based on the Cloud and Positioning Systems to Improve Carpooling.

In DMS (pp. 90-95).

[11] Kothari, A. B. (2004). Genghis-a multiagent carpooling system. Bath: Department of

Computer Science, University of Bath.

http://www.sundaytimes.lk/111211/BusinessTimes/bt09.html

57

[12] Knapen, L., Keren, D., Yasar, A. U. H., Cho, S., Bellemans, T., Janssens, D., &

Wets, G. (2012). Analysis of the co-routing problem in agent-based carpooling

simulation.Procedia Computer Science, 10, 821-826.

[13] Cho, S., Yasar, A., &Knapen, L. (2011). CarPoolingAgent-based carpooling design

(Part-A).IMOB internal report.

[14]Gallo, G., Longo, G., Pallottino, S., & Nguyen, S. (1993). Directed hypergraphs and

applications. Discrete applied mathematics, 42(2), 177-201.

[15] ‘Cubillos, C., &Guidi-Polanco, F. (2006). An Agent Solution to Flexible Planning

and Scheduling of Passenger Trips.In Artificial Intelligence in Theory and Practice (pp.

355-364). Springer US.’

[16] Bellifemine, F. L., Caire, G., & Greenwood, D. (2007). Developing multi-agent

systems with JADE (Vol. 7). John Wiley & Sons.

[17] Cubillos, C., Guidi-Polanco, F., &Demartini, C. (2004, October). Multi-agent

infrastructure for distributed planning of demand-responsive passenger transportation

service. In Systems, Man and Cybernetics, 2004 IEEE International Conference on (Vol.

2, pp. 2013-2017). IEEE.

[18] Manzini, R., &Pareschi, A. (2012). A decision-support system for the car pooling

problem. Journal of Transportation Technologies, 2, 85.

[19] Morris, J. (2008). Saferide: Reducing single occupancy vehicles. Technical report.

[20] Knapen, L., Yasar, A., Cho, S., Keren, D., Dbai, A. A., Bellemans, T., ...&Bhaduri,

K. (2013). Exploiting graph-theoretic tools for matching in carpooling

applications. Journal of Ambient Intelligence and Humanized Computing, 1-15.

[21] Russell, S. J., Norvig, P., Canny, J. F., Malik, J. M., & Edwards, D. D. (1995).

Artificial intelligence: a modern approach (Vol. 2). Englewood Cliffs: Prentice hall.

[22] FIPA, Foundation for Intelligent Physical Agents, website: http://www.fipa.org

[23] Brooks, R. A. (1986). A robust layered control system for a mobile robot. Robotics

and Automation, IEEE Journal of, 2(1), 14-23.

[24] Rao, A.S. and Georgeff, M. BDI Agents: from Theory to Practice. In Proceedings of

the 1st International Conference on Multi-Agent Systems, pp. 312–319, San Francisco,

CA, 1995.

58

[25] Georgeff, M. and Lansky, A. Reactive Reasoning and Planning: an Experiment with

a Mobile Robot. In Proceedings of the 7th National Conference on Artificial Intelligence,

pp. 677–682, Seattle, WA, 1987.

[26] Ferguson, I.A. Towards an Architecture for Adaptive, Rational, Mobile Agents.

InWerner, E. and Demazeau, Y. (eds), Decentralized AI 3 – Proceedings of the Third

European Workshop on Modelling Autonomous Agents and Multi-Agent World, pp.

249–262, Elsevier, Amsterdam, The Netherlands, 1991.

[27] Muller, J.P., Pischel, M. and Thiel, M. Modelling Reactive Behaviour in Vertically

Layered Agent Architectures. In Wooldridge, M. and Jennings, N.R. (eds), Intelligent

Agents: Theories, Architectures, and Languages (LNAI 890), pp. 261–276, Springer-

Verlag, Heidelberg, 1995.

[28] Searle, J. Speech Acts, Cambridge, MA, Cambridge University Press, 1969.

[29] Mayfield, J., Labrou, Y. and Finin, T. Evaluating KQML as an Agent

Communication Language. In Wooldridge, M., M¨uller, J.P. and Tambe, M. (eds),

Intelligent Agents II (LNAI 1037), pp. 347–360. Springer-Verlag, Heidelberg, 1996.

[30] Genesereth, M.R. and Ketchpel, S.P. Software Agents. Communications of the

ACM, 37(7): pp. 48–53, 1994.

[31] Labrou, Y., Finin T., and Peng, Y. Agent Communication Languages: the Current

Landscape. IEEE Intelligent Systems, 14(2): pp. 45–52, 1999.

[32] Nwana, H.S., Lee, L. and Jennings, N.R. Coordination in Software Agent Systems.

BT Technology Journal,14(4): pp. 79–88, 1996.

[33] Durfee, E. Distributed Problem Solving and Planning. In Weiß, Gerhard, (ed.),

Multiagent Systems: a Modern Approach to Distributed Artificial Intelligence, pp. 121–

164, MIT Press, Cambridge, MA, 1999.

[34] Smith, R. and Davis, R. The Contract Net protocol: High Level Communication and

Control in a Distributed Problem Solver. IEEE Transactions on Computers, 29(12): pp.

1104–1113, 1980.

[35] Georgeff, M., Communication and Interaction in Multi-Agent Planning. In

Proceedings of the 3rd National

Conference on Artificial Intelligence, pp. 125–129, Washington, DC, 1983.

[36] Georgeff, M., A Theory of Action for Multi Agent Planning, Proceedings of the 4th

National Conference on Artificial Intelligence, pp. 121–125, Austin, TX, 1984.

59

[37] Durfee, E. and Victor, L. Using Partial Global Plans to Coordinate Distributed

Problem Solvers. In Proceedings of the 10th International Joint Conference on Artificial

Intelligence, pp. 875–883, Milan, August 1987.

[38] Bussmann, S. and Muller, J. A Negotiation Framework for Co-operating Agents.In

Deen, S.M. (ed.), Proceedings of CKBS-SIG, pp. 1–17, Keele, UK, 1992.

[39] Garson G. Quantification in Modal Logic. In Handbook of Philosophical Logic, Vol.

II: Extensions of Classical

Logic, pp. 249–307, D. Reidel Publishing Company, 1984.

[40] B. Burmeister, A. Haddadi, G. Matylis, Application of multi-agent systems in traffic

and transportation, IEE Proceedings on Software Engineering 144 (1) (1997) 51–60

 [41] Ferber, J. (1999). Multi-agent systems: an introduction to distributed artificial

intelligence (Vol. 1). Reading: Addison-Wesley.

60

Appendix A:

JADE Architecture Overview

A.1 Introduction

This appendix gives an architectural overview of the JADE platform as retrieved from the

http://jade.tilab.com/ website.

A.2 JADE Architecture Overview

This provides an overview of the JADE Architecture introducing the notions of

• Agent

• Container

• Platform

• Main Container

• AMS and DF

http://jade.tilab.com/

61

The figure represents the main JADE architectural elements. An application based on

JADE is made of a set of components called Agents each one having a unique name.

Agents execute tasks and interact by exchanging messages. Agents live on top of a

Platform that provides them with basic services such as message delivery. A platform is

composed of one or more Containers. Containers can be executed on different hosts thus

achieving a distributed platform. Each container can contain zero or more agents.

For instance, with reference to the picture, container "Container 1" in host Host 3

contains agents A2 and A3. Even if in some particular scenarios this is not always the

case, you can think of a Container as a JVM (so, 1 JVM ==> 1 container ==> 0 or many

agents). A special container called Main Container exists in the platform.

The main container is itself a container and can therefore contain agents, but differs from

other containers as

1. It must be the first container to start in the platform and all other containers register to

it at bootstrap time

2. It includes two special agents: the AMS that represents the authority in the platform and

is the only agent able to perform platform management actions such as starting and

killing agents or shutting down the whole platform (normal agents can request such

actions to the AMS). The DF that provides the Yellow Pages service where agents can

publish the services they provide and find other agents providing the services they need.

It should be noticed that if another main container is started, as in host Host 4, this

constitutes a new platform.

Agent communication

Agents can communicate transparently regardless of whether they live in the same

container (e.g. A2 and A3), in different containers (in the same or in different hosts)

belonging to the same platform (e.g. A1 and A2) or in different platforms (e.g. A1 and

A5). Communication is based on an asynchronous message passing paradigm.

62

Message format is defined by the ACL language defined by FIPA, an international

organization that issued a set of specifications for agent interoperability. An ACL

Message contains a number of fields including

• the sender

• the receiver(s)

• the communicative act (also called performative) that represents the intention of

the sender of the message. For instance when an agent sends an INFORM

message it wishes the receiver(s) to become aware about a fact (e.g. (INFORM

"today it's raining")). When an agent sends a REQUEST message it wishes the

receiver(s) to perform an action. FIPA defined 22 communicative acts, each one

with a well defined semantics, that ACL gurus assert can cover more than 95% of

all possible situations. Fortunately in 99% of the cases we don't need to care about

the formal semantics behind Communicative acts and we just use them for their

intuitive meaning.

• the content i.e. the actual information conveyed by the message (the fact the

receiver should become aware of in case of an INFORM message, the action that

the receiver is expected to perform in case of a REQUEST message)

63

Appendix B:

List of simulated users and their routes

B.1 Introduction

This appendix gives the list of users and their routes that were simulated to evaluate the

system functionality.

B.2 List of addresses used to simulateuser routes

The below address list taken from a listing of schools in the Western Province of Sri

Lanka was used to generate the route list for simulated users. This list was chosen

because it gives a well-distributed list of addresses in the Western Province of Sri Lanka.

Therefore it can be effectively used to simulate a rideshare system in the Western

Province.

1. Maligakanda road, Colombo 10 01000

2. PADOGA ROAD, KOTTE 10100

3. AdikaramMawatha, Kotte 10010

4. Baseline Road, Dematagoda,Colombo-9 00900

5. wp/ja/mahamathayvidyalaya, Athurugiriya 12010

6. Hokandara South, Hokandara 10118

7. AnandaRajakarunaMawatha, Colombo 10 01000

8. Kularathnamawatha, Colombo 10 0015

9. High Level Rd,, Nugegoda, 01

10. Katubedda, Moratuwa

11. Bope, Padukka

12. Buddhagosha M.V., Kalubowila 12056

13. Highlevel Road, Maharagama 10400

14. Bomiriya National School, Colombo

15. Boralesgamuwa M.V, Boralesgamuwa 10290

16. Station Road, Mount Lavinia

17. DanisterdeSilvaMawatha, Colombo 08 00025

64

18. 155,BandaranayekeMawatha,, Colombo-12 0094

19. Auburn Place, Dehiwala

20. Templer\'s Road, Mount Lavinia 0094

21. Godagama Road, Athurugiriya 90018

22. ., Piliyandala 10129

23. Kynsey road, Colombo 08

24. 62, Gregory\'s Road,, Colombo 07

25. Moratuwa, Moratuwa

26. Brahmanagama, Pannipitiya

27. No 34, Mallay Street, Colombo 02

28. DarmapalaMawatha, Dehiwala 011

29. SriJayawardhanapuraMawatha, Borella 00800

30. Kesbewa, Piliyandala

31. Diyagama, Kiriwattuduwa. 10208

32. Park Road, Colombo 05

33. DharmapalaVidyalaya, Pannipitiya

34. Hotel Road, Mount Lavinia

35. wasala road, colombo 13

36. Temple Road, Maradana 01000

37. habarakada, homagama

38. 45, Husseiniya, Colombo 12 3012

39. Dam Street, Colombo 12

40. Court Road, Homagama

41. Athurugiriya RD, Homagama 10200

42. Salamulla, Kolonnawa 10600

43. 207/1, DharmapalaMawatha, Colombo 7 00700

44. Ministry of Education, Pelawatta

45. Ministry of Education, Pelawatta

46. Jalthara. Hanwella, Hanwella 1224

47. School Lane, Nawala,Rajagiriya, Colombo 011

48. 166, Dematagoda Road,, Colombo 09 011

49. Kosgama

50. kosgama, kosgama 00255

51. MahaVidyalaMawatha, Colombo 13 01300

65

52. Hokandara Road, Pannipitiya 10230

53. Mulleriyawa New town

54. Kandawala Road, Ratmalana

55. Horana Road, Kottawa, Pannioitiya

56. Hena Road, Mount Lavinia 10370

57. Havelock Town, Colombo 05

58. No. 724, Galle Road, Colombo 03

59. Thalangama North, Bathtaramulla 10120

60. Madiwela, Kotte

61. magammana, Homagama

62. Foster Lane, Colombo

63. Pepiliyana Road, Nugegoda 24250

64. Gammana Road, Maharagama

65. Bokundara, Piliyandala

66. Makuluduwa, Piliyandala

67. New Kandy Road, Malabe 094

68. Horana Road, Mattegoda,Pannipitiya.

69. Mawathgama, Homagama 10220

70. Mayadunna M.V., Hanvella

71. Padukka Road, Meegoda 10504

72. Meegoda, 10504

73. Meethotamulla Road, Kolonnawa

74. Kensington gardens, Colombo 04,, Colombo 0004

75. New Kandy Rd,, Malabe

76. Siridammamawatha, Colombo

77. Hiripitiya, Pannipitiya 10230

78. stanleythilakaratna mw, nugegoda

79. High Level Road, Maharagama

80. Isurupaya, Battaramulla

81. SiriPiyararhana Central College, Padukka

82. Pahathgama, Hanwella

83. Madapatha, Piliyandala

84. Pinnawala , Waga, Padukka

85. WP/HO/Pitipanam.v. Pitpana North, Homagama

66

B.3 List of simulated users and their routes

Using the above address list in a random pairing algorithm the below user route list was

generated. This generated data was used to simulate a rideshare/carpool system. Results

of the simulation were presented in the evaluation chapter.

User Route Start Route End

1 Maligakanda road,, Colombo 10 01000 Baseline Road, Dematagoda,Colombo-9 00900

2 PADOGA ROAD, KOTTE 10100 Hokandara South, Hokandara 10118

3 AdikaramMawatha, Kotte 10010 Hokandara South, Hokandara 10118

4 AdikaramMawatha, Kotte 10010 AnandaRajakarunaMawatha, Colombo 10 01000

5 Hokandara South, Hokandara 10118 High Level Rd,, Nugegoda, 01

6 Hokandara South, Hokandara 10118 Katubedda, Moratuwa

7 AnandaRajakarunaMawatha, Colombo 10 01000 Katubedda, Moratuwa

8 AnandaRajakarunaMawatha, Colombo 10 01000 Pinnawala , Waga, Padukka

9 Kularathnamawatha, Colombo 10 0015 Pinnawala , Waga, Padukka

10 High Level Rd,, Nugegoda, 01 High Level Road, Maharagama

11 Katubedda, Moratuwa High Level Road, Maharagama

12 Katubedda, Moratuwa Siridammamawatha, Colombo

13 Pinnawala , Waga, Padukka Siridammamawatha, Colombo

14 Pinnawala , Waga, Padukka Boralesgamuwa M.V, Boralesgamuwa 10290

15 High Level Road, Maharagama Station Road, Mount Lavinia

16 High Level Road, Maharagama Danister de Silva Mawatha, Colombo 08 00025

17 Siridammamawatha, Colombo Danister de Silva Mawatha, Colombo 08 00025

18 Siridammamawatha, Colombo 155,Bandaranayeke Mawatha,, Colombo-12 0094

19 Boralesgamuwa M.V, Boralesgamuwa 10290 155,Bandaranayeke Mawatha,, Colombo-12 0094

20 Boralesgamuwa M.V, Boralesgamuwa 10290 Auburn Place, Dehiwala

21 Danister de Silva Mawatha, Colombo 08 00025 Templer\'s Road, Mount Lavinia 0094

22 Danister de Silva Mawatha, Colombo 08 00025 Athurugiriya RD, Homagama 10200

23 155,Bandaranayeke Mawatha,, Colombo-12 0094 Athurugiriya RD, Homagama 10200

24 155,Bandaranayeke Mawatha,, Colombo-12 0094 ., Piliyandala 10129

25 Auburn Place, Dehiwala ., Piliyandala 10129

26 Auburn Place, Dehiwala Kynsey road, Colombo 08

27 Templer\'s Road, Mount Lavinia 0094 Kynsey road, Colombo 08

28 Templer\'s Road, Mount Lavinia 0094 62, Gregory\'s Road,, Colombo 07

67

29 Athurugiriya RD, Homagama 10200 62, Gregory\'s Road,, Colombo 07

30 Athurugiriya RD, Homagama 10200 Moratuwa, Moratuwa

31 ., Piliyandala 10129 Brahmanagama, Pannipitiya

32 Kynsey road, Colombo 08 Brahmanagama, Pannipitiya

33 Kynsey road, Colombo 08 No 34, Mallay Street, Colombo 02

34 62, Gregory\'s Road,, Colombo 07 No 34, Mallay Street, Colombo 02

35 62, Gregory\'s Road,, Colombo 07 DarmapalaMawatha, Dehiwala 011

36 Moratuwa, Moratuwa DarmapalaMawatha, Dehiwala 011

37 Moratuwa, Moratuwa Sri JayawardhanapuraMawatha, Borella 00800

38 Brahmanagama, Pannipitiya Sri JayawardhanapuraMawatha, Borella 00800

39 Brahmanagama, Pannipitiya Kesbewa, Piliyandala

40 No 34, Mallay Street, Colombo 02 Kesbewa, Piliyandala

41 No 34, Mallay Street, Colombo 02 Diyagama, Kiriwattuduwa. 10208

42 DarmapalaMawatha, Dehiwala 011 Diyagama, Kiriwattuduwa. 10208

43 DarmapalaMawatha, Dehiwala 011 Park Road, Colombo 05

44 Sri JayawardhanapuraMawatha, Borella 00800 Park Road, Colombo 05

45 Sri JayawardhanapuraMawatha, Borella 00800 DharmapalaVidyalaya, Pannipitiya

46 Kesbewa, Piliyandala DharmapalaVidyalaya, Pannipitiya

47 Kesbewa, Piliyandala Hotel Road, Mount Lavinia

48 Diyagama, Kiriwattuduwa. 10208 Hotel Road, Mount Lavinia

49 Diyagama, Kiriwattuduwa. 10208 wasala road, colombo 13

50 Park Road, Colombo 05 wasala road, colombo 13

51 Park Road, Colombo 05 Temple Road, Maradana 01000

52 DharmapalaVidyalaya, Pannipitiya Temple Road, Maradana 01000

53 DharmapalaVidyalaya, Pannipitiya habarakada, homagama

 54 Hotel Road, Mount Lavinia habarakada, homagama

 55 Hotel Road, Mount Lavinia 45, Husseiniya, Colombo 12 3012

56 wasala road, colombo 13 Dam Street, Colombo 12

 57 Temple Road, Maradana 01000 Dam Street, Colombo 12

 58 Temple Road, Maradana 01000 Court Road, Homagama

 59 habarakada, homagama Court Road, Homagama

 60 habarakada, homagama Athurugiriya RD, Homagama 10200

61 45, Husseiniya, Colombo 12 3012 Athurugiriya RD, Homagama 10200

62 45, Husseiniya, Colombo 12 3012 Meethotamulla Road, Kolonnawa

63 Dam Street, Colombo 12 Meethotamulla Road, Kolonnawa

64 Dam Street, Colombo 12

207/1, DharmapalaMawatha, Colombo 7

00700

65 Court Road, Homagama 207/1, DharmapalaMawatha, Colombo 7

68

00700

66 Court Road, Homagama Ministry of Education, Pelawatta

67 Athurugiriya RD, Homagama 10200 Ministry of Education, Pelawatta

68 habarakada, homagama Ministry of Education, Pelawatta

69 Meethotamulla Road, Kolonnawa Ministry of Education, Pelawatta

70 Meethotamulla Road, Kolonnawa Jalthara. Hanwella, Hanwella 1224

71 207/1, DharmapalaMawatha, Colombo 7 00700 Jalthara. Hanwella, Hanwella 1224

72 207/1, DharmapalaMawatha, Colombo 7 00700

School Lane, Nawala,Rajagiriya, Colombo

011

73 Ministry of Education, Pelawatta

School Lane, Nawala,Rajagiriya, Colombo

011

74 Ministry of Education, Pelawatta 166, Dematagoda Road,, Colombo 09 011

75 Ministry of Education, Pelawatta 166, Dematagoda Road,, Colombo 09 011

76 Ministry of Education, Pelawatta Kosgama

 77 Jalthara. Hanwella, Hanwella 1224 Kosgama

 78 Jalthara. Hanwella, Hanwella 1224 kosgama, kosgama 00255

79 School Lane, Nawala,Rajagiriya, Colombo 011 kosgama, kosgama 00255

80 School Lane, Nawala,Rajagiriya, Colombo 011 MahaVidyalaMawatha, Colombo 13 01300

81 166, Dematagoda Road,, Colombo 09 011 MahaVidyalaMawatha, Colombo 13 01300

82 166, Dematagoda Road,, Colombo 09 011 Hokandara Road, Pannipitiya 10230

83 Kosgama Hokandara Road, Pannipitiya 10230

84 Kosgama Mulleriyawa New town

 85 kosgama, kosgama 00255 Mulleriyawa New town

 86 kosgama, kosgama 00255 Kandawala Road, Ratmalana

87 MahaVidyalaMawatha, Colombo 13 01300 Kandawala Road, Ratmalana

88 MahaVidyalaMawatha, Colombo 13 01300 Horana Road, Kottawa, Pannioitiya

89 Hokandara Road, Pannipitiya 10230 Horana Road, Kottawa, Pannioitiya

90 Hokandara Road, Pannipitiya 10230 Hena Road, Mount Lavinia 10370

91 Mulleriyawa New town Hena Road, Mount Lavinia 10370

92 Mulleriyawa New town Havelock Town, Colombo 05

93 Kandawala Road, Ratmalana Havelock Town, Colombo 05

94 Kandawala Road, Ratmalana No. 724, Galle Road, Colombo 03

95 Horana Road, Kottawa, Pannioitiya No. 724, Galle Road, Colombo 03

96 Horana Road, Kottawa, Pannioitiya Thalangama North, Bathtaramulla 10120

97 Hena Road, Mount Lavinia 10370 Thalangama North, Bathtaramulla 10120

98 Hena Road, Mount Lavinia 10370 Madiwela, Kotte

 99 Havelock Town, Colombo 05 Madiwela, Kotte

 100 Havelock Town, Colombo 05 magammana, Homagama

69

Appendix C:

FIPA ACL Message Structure

C.1 Introduction

This appendix gives a detailed description of the FIPA ACL message structure taken

from the FIPA standard specification SC00061.

C.2 FIPA ACL Message Structure

A FIPA ACL message contains a set of one or more message parameters. Precisely which

parameters are needed for effective agent communication will vary according to the

situation; the only parameter that is mandatory in all ACL messages is the performative,

although it is expected that most ACL messages will also

contain sender, receiver and content parameters.

If an agent does not recognize or is unable to process one or more of the parameters or

parameter values, it can reply with the appropriate not-understood message.

Specific implementations are free to include user-defined message parameters other than

the FIPA ACL message parameters specified in Table 1. The semantics of these user-

defined parameters is not defined by FIPA, and FIPA compliance does not require any

particular interpretation of these parameters. The prefatory string “X-” must be used for

the names of these non-FIPA standard additional parameters.

Some parameters of the message might be omitted when their value can be deduced by

the context of the conversation. However, FIPA does not specify any mechanism to

handle such conditions, therefore those implementations that omit some message

parameters are not guaranteed to interoperate with each other.

70

The full set of FIPA ACL message parameters is shown in Table 1 without regard to their

specific encodings in an implementation. FIPA-approved encodings and parameter

orderings for ACL messages are given in other specifications. Each ACL message

representation specification contains precise syntax descriptions for ACL message

encodings based on XML, text strings and several other schemes.

A FIPA ACL message corresponds to the abstract parameter message payload identified

in the [FIPA00001].

Parameter Category of Parameters

performative Type of communicative acts

sender Participant in communication

receiver Participant in communication

reply-to Participant in communication

content Content of message

language Description of Content

encoding Description of Content

ontology Description of Content

protocol Control of conversation

conversation-id Control of conversation

reply-with Control of conversation

in-reply-to Control of conversation

reply-by Control of conversation

The following terms are used to define the ontology and the abstract syntax of the FIPA

ACL message structure:

71

· Frame. This is the mandatory name of this entity that must be used to represent

each instance of this class.

· Ontology. This is the name of the ontology, whose domain of discourse includes

their parameters described in the table.

· Parameter. This identifies each component within the frame. The type of the

parameter is defined relative to a particular encoding. Encoding specifications for

ACL messages are given in their respective specifications.

· Description. This is a natural language description of the semantics of each

parameter. Notes are included to clarify typical usage.

· Reserved Values. This is a list of FIPA-defined constants associated with each

parameter. This list is typically defined in the specification referenced.

All of the FIPA message parameters share the frame and ontology shown in Table 2.

Frame fipa-acl-message

Ontology fipa-acl

Type of Communicative Act

Performative

Parameter Description Reserved Values

performative Denotes the type of the communicative act of

the ACL message

See [FIPA00037]

Notes: The performative parameter is a required parameter of all ACL messages.

Developers are encouraged to use the FIPA standard performatives (see [FIPA00037])

whenever possible.

72

Participants in Communication

Sender

Parameter Description Reserved Values

sender Denotes the identity of the sender of the

message, that is, the name of the agent of the

communicative act.

Notes: The sender parameter will be a parameter of most ACL messages. It is possible to

omit the sender parameter if, for example, the agent sending the ACL message wishes to

remain anonymous. The sender parameter refers to the agent which performs the

communicative act giving rise to this ACL message.

Receiver

Parameter Description Reserved Values

receiver Denotes the identity of the intended recipients

of the message.

Notes: Ordinarily, the receiver parameter will be a part of every ACL message. It is only

permissible to omit the receiver parameter if the message recipient can be reliably

inferred from context, or in special cases such as the embedded ACL message

in proxy and propagate.

The receiver parameter may be a single agent name or a non-empty set of agent names.

The latter corresponds to the situation where the message is multicast. Pragmatically, the

semantics of this multicast is that the sender intends the message for each recipient of the

CA encoded in the message. For example, if an agent performs an inform act with a set of

three agents as receiver, it denotes that the sender intends each of these agents to come to

believe the content of the message.

73

Reply To

Parameter Description Reserved Values

reply-to This parameter indicates that subsequent

messages in this conversation thread are to be

directed to the agent named in thereply-

to parameter, instead of to the agent named in

the senderparameter.

Content of Message

Content

Parameter Description Reserved Values

content Denotes the content of the message;

equivalently denotes the object of the action.

The meaning of the content of any ACL

message is intended to be interpreted by the

receiver of the message. This is particularly

relevant for instance when referring to

referential expressions, whose interpretation

might be different for the sender and the

receiver.

Notes: Most ACL messages require a content expression. Certain ACL message types,

such as cancel, have an implicit content, especially in cases of using the conversation-

id or in-reply-to parameters.

74

Description of Content

Language

Parameter Description Reserved Values

language Denotes the language in which the content

parameter is expressed.

See [FIPA00007]

Notes: The ACL content parameter is expressed in a formal language. This field may be

omitted if the agent receiving the message can be assumed to know the language of the

content expression.

Encoding

Parameter Description Reserved Values

encoding Denotes the specific encoding of the content

language expression.

See [FIPA00007]

Notes: The content expression might be encoded in several ways.

The encoding parameter is optionally used to specify this encoding to the recipient agent.

If the encoding parameter is not present, the encoding will be specified in the message

envelope that encloses the ACL message.

Ontology

Parameter Description Reserved Values

ontology Denotes the ontology(s) used to give a

meaning to the symbols in the content

expression.

Notes: The ontology parameter is used in conjunction with the language parameter to

support the interpretation of the content expression by the receiving agent. In many

75

situations, the ontology parameter will be commonly understood by the agent community

and so this message parameter may be omitted.

Control of Conversation

Protocol

Parameter Description Reserved Values

protocol Denotes the interaction protocol that the

sending agent is employing with this ACL

message.

See [FIPA00025]

Notes: The protocol parameter defines the interaction protocol in which the ACL

message is generated. This parameter is optional; however, developers are advised that

employing ACL without the framework of an interaction protocol (and thus directly using

the ACL semantics to control the agent’s generation and interpretation of ACL messages)

is an extremely ambitious undertaking.

Any ACL message that contains a non-null value for the protocol parameter is considered

to belong to a conversation and it is required to respect the following rules:

· the initiator of the protocol must assign a non-null value to the conversation-

id parameter,

· all responses to the message, within the scope of the same interaction protocol,

should contain the same value for the conversation-id parameter, and,

· the timeout value in the reply-by parameter must denote the latest time by which

the sending agent would like to have received the next message in the protocol flow

(not be confused with the latest time by which the interaction protocol should

terminate).

76

Conversation Identifier

Parameter Description Reserved Values

conversation-

id

Introduces an expression (a conversation

identifier) which is used to identify the

ongoing sequence of communicative acts that

together form a conversation.

Notes: An agent may tag ACL messages with a conversation identifier to manage its

communication strategies and activities. Typically this will allow an agent to identify

individual conversations with multiple agents. It will also allow agents to reason across

historical records of conversations.

It is required the usage of globally unique values for the conversation-id parameter in

order to allow the participants to distinguish between several concurrent conversations. A

simple mechanism to ensure uniqueness is the concatenation of the globally unique

identifier of the sender agent to an identifier (for example, a progressive number) that is

unique within the scope of the sender agent itself.

Reply With

Parameter Description Reserved Values

reply-with Introduces an expression that will be used by

the responding agent to identify this message.

Notes: The reply-with parameter is designed to be used to follow a conversation thread in

a situation where multiple dialogues occur simultaneously. For example, if agent i sends

to agent j a message which contains:

reply-with <expr>

77

Agent j will respond with a message containing:

in-reply-to <expr>

In Reply To

Parameter Description Reserved Values

in-reply-to Denotes an expression that references an

earlier action to which this message is a reply.

Notes: See notes for Section 2.5.3.

Reply By

Parameter Description Reserved Values

reply-by Denotes a time and/or date expression which

indicates the latest time by which the sending

agent would like to receive a reply.

Notes: The time will be expressed according to the sender’s view of the time on the

sender’s platform. The reply message can be identified in several ways: as the next

sequential message in an interaction protocol, through the use of the reply-with parameter,

through the use of a conversation-id and so forth. The way that the reply message is

identified is determined by the agent implementer.

	Chapter 1
	Introduction
	1.1 Prolegomenon
	Problem definition
	Aim and Objectives
	Outline
	Summary

	Chapter 2 Analysis of carpooling/ridesharing solutions
	2.1 Introduction
	2.2 Research into the challenges of carpooling and ridesharing
	2.3 Solving the carpooling problem using multi agent systems
	2.4 Other solutions to the carpooling problem
	2.5 Summary

	Chapter 3 Multi Agent Systems and their applications
	3.1 Introduction
	3.2 Agent Definition
	Simple reflex agents
	Model-based reflex agents
	Goal-based agents
	Utility-based agents
	Learning agents

	3.3 Multi agent system implementation

	Chapter 4 Solving complexity using a multi agent system
	4.1 Introduction
	4.2 Hypothesis
	4.3 System requirements and features
	4.4 Solution overview
	4.5 Summary

	Chapter 5 Design
	5.1 Introduction
	5.2 System layered architecture
	5.3 Interface Layer
	The interface layer consists of the user registration page and the journey scheduling page which includes a Google Map view which will display the scheduled and matched journeys to the user.
	5.4 Agent Layer
	5.5 Ontology Layer
	5.6 System activity diagrams
	Activity 2
	A passenger requests a journey on the system. Here two tasks are executed in parallel. The journey is stored on the system and the system is searched for a driver who can fulfil the request.
	5.7 Summary

	Chapter 6 Implementation
	6.1 Introduction
	6.2 Interface module implementation
	6.3 Agent layer implementation
	6.4 JADE agent behaviors
	6.5 System agents
	6.6 Route Match Agent Algorithm
	6.7 Ontology layer implementation
	The ontology layer of the system consists of the datasource, social and maps modules. The implementation of each of these modules is discussed next.
	6.8 Database layer implementation
	6.9 Social network module
	6.10 Maps data Layer
	6.10 Implementing the application using JADE
	The application is built as a hybrid of a web application and agent application. The application interface is web based and the backend operations are performed by agents running over the JADE agent platform.
	6.11 Summary

	Chapter 7 Evaluation
	7.1 Introduction
	7.2 Evaluating the route match algorithm
	7.5 Summary

	Chapter 8 Conclusion
	8.1 Introduction
	8.2 Conclusion
	8.3 Future work
	8.4 Summary
	References

	Appendix A: JADE Architecture Overview
	A.1 Introduction

	Appendix B: List of simulated users and their routes
	B.1 Introduction

	Appendix C: FIPA ACL Message Structure
	C.1 Introduction
	This appendix gives a detailed description of the FIPA ACL message structure taken from the FIPA standard specification SC00061.
	C.2 FIPA ACL Message Structure
	Type of Communicative Act
	Performative

	Participants in Communication
	Sender
	Receiver
	Reply To

	Content of Message
	Content

	Description of Content
	Language
	Encoding
	Ontology

	Control of Conversation
	Protocol
	Conversation Identifier
	Reply With
	In Reply To
	Reply By

