DEVELOPMENT OF COMMUNICATION NETWORK FOR AUTOMATIC METER READING SYSTEM

Amila Alwis Weerasinghe

108871H

Dissertation submitted in partial fulfillment of the requirement for the degree of Master of Science

Department of Electrical Engineering

University of Moratuwa

Sri Lanka

May 2015

DECLARATION

I declare that this is my own work and this dissertation does not incorporate without acknowledgment any material previously submitted for a Degree or Diploma in any other University or institute of higher learning and to best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgment is made in the text.

Also, I hereby grant to University of Moratuwa the non-exclusive right to reproduce and distribute my dissertation, in whole or in part in print, electronic or other medium. I retain the right to use this content in whole or part in future works (such as articles or books)

A. A. Weerasinghe

Date:

The above candidate has carried out research for the Masters Dissertation under my supervision.

Prof. Nalin Wickramarachchi

Date:

Dr. Narendra De Silva

Date:

Acknowledgements

First, I would like to extend my gratitude to the project supervisors, prof. Nalin Wickramarachchi and Dr. Narendra De Silva who guided and giving advices me throughout the project where finally it could be completed with promising outcomes within the allocated time. Also my sincere thanks go to all academic and non academic staff of the Department of Electrical Engineering, Faculty of Engineering, University of Moratuwa for giving assistance and facilitating me in very many ways on my M.Sc. studies. Also Lanka Electricity Company (Private) Limited staff supported me by providing necessary information, materials and data relevant to this project, I warmly thank them since without their support I would not achieve this outcome at all. Also my sincere thanks go to my family members for their dedication and support given throughout the project. Lastly, I should thank many individuals, friends and colleagues who have not been mentioned here personally, in making this research project a success.

Abstract

This thesis presents a research work which is carried out to find out correct network resources requirement for an automatic meter reading system. There are various technologies available to automate the meter reading such as PLC, messaging over GSM, telephone line and RF technologies.

As far as utilities providers are concerned, their focus is on a reliable AMR system to read the meter at minimum cost. Development of a reliable AMR system is highly dependant on telecommunication infrastructure which is costly. Therefore, network resource planning needs to be researched in depth to develop a reliable utility wide AMR system.

This particular research is on data concentrator based AMR system focusing on the analysing of cross relationship between channel requirements of the last mile data communication channel, data concentrator memory requirement and backbone channel bandwidth requirements.

This research has established mathematical simulation models for the last mile channel communication, data concentration memory and backbone channel communication infrastructure and integrated into a single model using software tool MATLAB Simulink. This model has established a scientific conclusion of a methodology to estimate the infrastructure requirements to design of such data concentrator based AMR system.

Developed MATLAB Simulink program is used as a computational algorithm that can repeat the program with multi variable inputs to obtain the numerical results. Monte Carlo method is quite useful for solving this kind of simulating phenomena with having many degrees of freedom, significant uncertainty in inputs and wide variety of scenarios.

Various sampling parameters were input to the system and, related results for various scenarios were obtained. These results were then used to find out cross relationships between three main components of a data concentrator based AMR systems and their requirements.

The results of this research are also adopted to develop a utility wide AMR system as pilot projects with LECO staff at various distribution networks.

TABLE OF CONTENTS

Declaration			i	
Acknowledgements			ii	
Abstract				
Table of contents				
List	of Figur	res	V	
List	of Table	es	vii	
List	of abbre	eviations	xiii	
List	of Appe	endices	Х	
1.	Introduction		1	
	1.1	Introduction to AMR	1	
	1.2	Introduction to existing technology	2	
	1.3	Problem identification	3	
	1.4	Objective	4	
	1.5	Methodology	4	
2.	Literature Survey		7	
	2.1	Existing AMR technologies	7	
	2.2	Future AMR and Smart meter technologies	12	
3.	Analysis of metering data structure		14	
	3.1	Standard metering protocol	14	
	3.2	Analysis of element data	16	
	3.3	Simulation of data traffic	22	
	3.4	Development of model for the traffic analysis	26	
	3.5	Integrated simulation model	44	
4	Simu	llation results and analysis	46	
5.	Deve	59		
	5.1	Zigbee solution for last mile in AMR	59	
	5.2	Zigbee Implementation	60	
	5.3	Industrial implementation	69	
6.	Conclusions		76	
	6.1	Conclusions and discussion	76	
	6.2	Future developments	79	
Reference List			81	
Appendix A : Moratuwa area distribution map				
Appendix B : Seeduwa area distribution map			84	
App	endix C	: Program code	85	
Арр	endix D	: MATLAB Simulink program (Soft copy)		

LIST OF FIGURES

Figure 3.2.1 – Configure	ation of the Energy meter reading through GPRS	16
Figure 3.2.2 – Microsof	t Network Monitor capturing meter data	17
Figure 3.2.3 – Graphica	l analysis of Data length vs No. of frames	19
Figure 3.2.4 – Graphica	l analysis of Data length vs frame No.	19
Figure 3.2.5 – Graphica	l analysis of Protocol data vs payload data	21
Figure 3.3.1 – Dividing	into Clusters	23
Figure 3.3.2 – Basic cor	ncept of model	25
Figure 3.4.1 – Simulink	System Model	27
Figure 3.4.2 – Flow diag	gram for billing data profile model	28
Figure 3.4.3 – Simulink	Program for billing data profile model	29
Figure 3.4.4 – Flow diag	gram for Load data profile model	30
Figure 3.4.5 – RF Chan	nel Model	31
Figure 3.4.6 – RF Chan	nel MATLAB program	32
Figure 3.4.7 – RF chann	nel speed model	34
Figure 3.4.8 – Source B	lock for Gaussian noise generator	35
Figure 3.4.9 – RF chann	nel speed MATLAB program	36
Figure 3.4.10 – GPRS ch	annel model	38
Figure 3.4.11 – GPRS ch	annel Simulink program	39
Figure 3.4.12 – Concentr	ator memory algorithm	41
Figure 3.4.13 – GPRS ch	annel speed model	42
Figure 3.4.14 – Simulink	GPRS channel speed program	43
Figure 3.5.1 – Integrate	d MATLAB Simulink program	45
Figure 4.1 – Backbone	e channel speed graph	46
Figure 4.2 – RF chann	iel speed graph	47
Figure 4.3 – Concentr	ator memory graph	48
Figure 4.4 – Case 1: C	Concentrator memory (a) vs Dp (b)	50
Figure 4.5 – Case 2: C	Concentrator memory (a) vs Dp (b)	51
Figure 4.6 – Case 3: C	Concentrator memory (a) vs Dp (b)	52
Figure 4.7 – Case 4: C	Concentrator memory (a) vs Dp (b)	54
Figure 4.8 – Case 5: C	Concentrator memory	55
Figure 4.9 – Case 6: C	Concentrator memory	56

Figure 4.10 – Case 7: Concentrator memory	57
Figure 5.2.1 – Zigbee expansion module	61
Figure 5.2.2 – Xbee module	61
Figure 5.2.3 – X-CTU software	62
Figure 5.2.4 – Xbee USB adaptor	63
Figure 5.2.5 – Arduino Mega 2560	63
Figure 5.2.6 – Arduino program	64
Figure 5.2.7 – Processing program & energy graph	65
Figure 5.2.8 – Simple Xbee data connection project	66
Figure 5.2.9 – Zigbee touting schema	
Figure 5.3.1 – Energy meter with Zigbee Module	
Figure 5.3.2 – Concentrator	
Figure 5.3.3 – Mesh network of the Zigbee radio network	72
Figure 5.3.4 – Radio Range Test of the Zigbee Network	72
Figure 5.3.5 –Radio Island	
Figure 6.2.1 – GUI	80

LIST OF TABLES

Table 3.2.1 – Load profile data	18
Table 3.2.2 – Summary of the Load profile data	20
Table 3.2.3 – Event data profile	20
Table 3.2.4 – Summary of data profiles	22
Table 3.3.1 – Data profile & frequency	23
Table 3.3.2 – Payload capacity of each clusters	24
Table 4.1 – Summary of the simulation results	58
Table 5.3.1 – Simulation results Vs actual implementation results	74
Table 5.3.2 – Cost analysis	75

LIST OF ABBREVIATIONS

Abbreviation Description

AMR	Automatic Meter Reading
AODV	Ad hoc On-demand Distance Vector
API	Application Programming Interface
APN	Access Point Names
BPSK	Binary Phase Shift Keying
CDMA	Code Division Multiple Access
CFE	Communication Front End
CLO	Current Loop
CSD	Circuit Switch Data
СТ	Current Transformer
D-AMPS	Digital Advance Mobile Phone
DMA	Direct Memory Access
Don	Duration of channel ON
Dp	Duration of channel plan
EP	Enhanced Polling
FIFO	First-In, First-Out
FSK	Frequency Shift Keying
FTP	File Transfer Protocol
GPRS	General Packet Radio Service
GSM	Global System for Mobile Communication
GUI	Graphic User Interface
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronics Engineers
IrDA	Infrared Data Association
ISDN	Integrated Services Digital Network
Kbps	kilo bits per seconds
LAN	Local Area Network
LECO	Lanka Electricity Company (Private) Limited
LED	Light Emitting Diode
LQI	Link quality Indicator
OFDM	Orthogonal Frequency Division Multiplexing
PC	Personal Computer
PDA	Personal Digital Assistant

PLC	Power Line Carrier
PSTN	Public Switch Telephone Network
RF	Radio Frequency
RMR	Remote Meter Reading
RRU	Remote Reading Unit
RSSI	Received Signal Strength Indicator
SIM	Subscriber Identity Module
SMTP	Simple Mail Transfer Protocol
SMS	Short Message Service
TCP/IP	Transmission Control Protocol/Internet Protocol
TDMA	Time Division Multiple Access
UART	Universal Asynchronous Receiver/Transmitter
USB	Universal Serial Bus
WSN	Wireless Sensor Network