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Abstract

Wireless Sensor Networks (WSNs) are application-specific systems, each having its
own requirements related to the design. Using WSNs for emergency rescue operations
is one such special application having localization of sensor nodes in a simple manner,
tracking of moving nodes, usually worn by rescue workers and navigation support for
rescue workers, as its major requirements. The overall objective of this research is to
develop a suit of algorithms for localization, tracking and navigation of wireless sensor
nodes in multistory indoor environments in emergency situations.

We base our research on the DV-Hop (Distance Vector) algorithm, which is an at-
tractive option for the localization of nodes in a wireless sensor network due to its sim-
plicity. We carry out a comprehensive study of the DV-Hop algorithm and its variations
through literature review and computer simulations. We then evaluate its performance
in emergency situations, where nodes may perish, new nodes may be introduced, and
communications links may be disrupted and new links set up. We then propose a new
algorithm for the improvement of localization accuracy of the DV-Hop algorithm. The
new algorithm is based on optimizing the Hop Size estimation in the original algorithm,
which is its key source of error.

We next present a new approach for target tracking in WSNs by combining the
DV-Hop algorithm with Kalman filtering. The DV-Hop algorithm is used for pre-
localization of the target and measurement conversion. Finally, we present a novel
navigation support algorithm for rescue personnel in emergency situations by emulating
virtually through WSN nodes, the lifeline used by the fire fighters.

The key contribution of this work is the development of WSN localization and tracking
techniques which are distributed in nature and resilient in emergency situations.

Index terms— DV-Hop, Localization, Wireless Sensor Networks, Target Tracking,
Navigation Support
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Chapter 1

INTRODUCTION

1.1 Wireless Sensor Networks

A Wireless Sensor Network (WSN) is a large scale ad hoc network with a large
number of sensor nodes distributed in a monitoring field [1]. Often these sensor
networks are deployed in remote and inaccessible areas. To cope with this, most
of the sensor nodes require not only a sensing component but also on-board
processing, communication and storage capabilities [2]. On the other hand these
sensor nodes are often light, small and cheap with low power transceivers and
limited data processing capabilities. Most of the time these sensor node perceive
the environment, process or fuse the collected data and communicate the same
with the neighbors and a base station (BS). Figure 1.1 [2] shows such a WSN
deployment.

[ Storage | L Mining —|

/

Figure 1.1: Typical Deployment of a Wireless Sensor Network

With the increase of the number of sensors in a network, sensors communicate
the gathered data wirelessly to a central processing station. This is the case for
most of the sensor networks deployed in remote and inaccessible areas. When
many sensors cooperatively monitor large physical environments, sensor nodes
communicate not only with each other but also with a base station. This allows
sensor nodes to communicate the gathered data to remote processing, visualiza-

tion, analysis and storage systems [2].




WSNs have been used in many practically important applications such as bat-
tle field surveillance, environmental monitoring, indoor user tracking, emergency
rescue operations, pipeline (water, oil, gas) monitoring, structural health moni-
toring, precision agriculture, supply chain monitoring, active volcano monitoring

and underground mining [2].
1.2 Emergency Situations and Application of WSNs

Natural and man-made disasters, such as fire situations, gas leak, earthquakes,
floods and terrorist attacks, have reinforced the need for better emergency re-
sponse solutions. WSNs can be applied in rescue operations in most of these
emergency situations. In this thesis we use a typical scenario of a fire emergency

for the illustration of our work.
1.2.1 Fire Rescue

Fire rescue operations are important and responsible activities that take place
for public safety. A typical scenario of a fire rescue operation can be summarized
as follows [3].

e When the fire department receives a fire alarm call, authorities will send a

fire rescue team to the location of fire.

e Normally, a fire rescue team includes one Incident Commander Vehicle, two
engine vehicles, one ladder vehicle and a set of fire fighters who are grouped

as squads associated with one of the above vehicles.

e During the process of fire rescue, the incident commander is in charge of the
operation, including monitoring the fire field and making real-time schedule

on fire fighter assignment.

e The two engine vehicles carry water which will be used in case water is in

short supply at the fire location.

e Ladder vehicles hold the utilities such as ladders that are needed for the
fire fighters.

e The fire fighters are organized into different squads based on their specialty
and fight cooperatively to extinguish the fire in the field.

There are a few shortcomings of the above mentioned procedure [3].
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o The Incident Commander may not be able to gather a clear view of either
the status of fire fighters after the rescue work begins or the accurate sit-
uation of the fire field, so that it is difficult for him to make an optimized
schedule.

o Fire fighters in the field do not know the danger of the situation around

them in advance, which increases the risk associated with the fire fighter.

e It is inflexible for the fire department headquarters located far away from the
fire field to get fresh and timely fire rescue information, which is particularly

important for big cities which might have multiple fires at the same time.

To address these shortcomings scholars have proposed some systems to sup-
port fire rescue operations [3]. WSNs have been widely studied in this con-
text 3], [4].

1.2.2 Requirements for Systems to Support Fire Rescue Operations

Since WSNs are application specific systems, different applications have different
specific requirements of the design of the underlying WSN. Using WSNs for fire
rescue operations is one such special application with its own set of requirements
as listed below [3].

Accountability of the authorities for the well-being of the fire fighters:
The Incident Commander and fire department need the information of the
fire fighters who are in the fire field to ensure their safety. Therefore the
WSN based system should be able to collect the necessary information and

report to the incident commander and other responsible authorities.

Real time monitoring: Real time information about the fire field is one of the
key aspects of a supporting system for fire rescue operations. The Incident
Commander needs the real time locations of the moving fire fighters so that
he could make a better schedule. In addition, fire field information is also
very useful for the incident commander to judge the real situation of the fire
rescue and make correct real time decisions and schedule. Therefore WSN
should be able to collect the environmental details of the fire field such as
temperature, humidity, smoke and wind speed. Further, information about
some vital events such as death of the fire fighters and dramatic changing
of the environment parameters, should be captured by the WSN. Based on




the above information, the incident commander and fire department will be

able to have a clear view of the fire field and make better decisions.

Intelligent scheduling and resource allocation: Based on the gathered data
by the WSN, the system should be able to provide support to the incident

commander to do better resource allocation and scheduling.

Web-enabled service and integration Not only does the incident comman-
der sitting near the fire field need the information collected by the WSN,
but also the officers sitting in the fire department, which is located for away
from the fire field. Web-based service is one of the most convenient ways
to do this. Further, the collected data can be stored and analyzed later to

find some good rescue models to support the future fire fights.

1.3 Basic Functions Required of a WSN to Support Rescue Opera-
tions

Before we apply a WSN in emergency rescue operations, we need to analyze the
functions that the WSN should perform.

There is no significance of the collected data by the WSN, if the location of
the sensor nodes are unknown since position is needed to locate events which
occur inside the WSN. The same position information can be extended for target
tracking, predicting the tracks of moving objects, assisting routing, managing
the topology of the network and for location aware services [2]. Tracking mov-
ing objects is another very important functionality that a WSN should perform.
Tracking functionality can be used to track and monitor the movement of fire
fighters during an fire incident. Further, providing navigation support for fire
fighters is another capability that a WSN should be capable of performing in
emergency related applications. In short, WSN should be able to perform three
basic functions as listed below.

e Localization of sensor nodes collecting information
o Tracking of moving nodes, usually worn by rescue workers
e Navigation Support for rescue workers

Many rescue support operations can be implemented upon these basic func-
tions. Therefore in this thesis we examine the above three aspects in relation to

emergency situations.



1.3.1 Localization

Localization is the task of determining the physical coordinates of sensor nodes
or spatial relationships among them. Even though the Global Positioning System
(GPS) is the most widely used localization technique, it is not accessible in all en-
vironments (indoor) and incur resource costs unacceptable compared with cheap
wireless sensor nodes. On this basis, finding efficient and effective localization
algorithms and techniques has become a hot and rising research area for many

scholars.

The basis of most of the WSN localization techniques is to estimate the posi-
tion of location unaware nodes (Unknown Nodes) relative to few location aware
nodes (Anchors). Locations of anchors can be obtained by using GPS or placing

the anchors at known points within the monitoring area [5].

A review of localization techniques relevant to this study is presented in section
2.2

1.3.2 Target Tracking

Target tracking is the functionality of tracing a moving object in a WSN. To be
able to track the moving object at least three or more sensors in the network are
required to sense the object simultaneously. A tracking system can be divided
mainly into three subsystems, namely sensing subsystem, tracking subsystem and
communication subsystem [6]. The sensing subsystem is used to sense the object.
Tracking subsystem runs the prediction based algorithm which is used to trace
the path of the moving object. Communication subsystem shares the collected
data among nodes and fusion centers. Due to limited resources of sensors, track-
ing of a moving object has become a challenging problem in WSNs. Because
of this challenging nature, such object tracking sensor networks are a spring of

research opportunities.
The current state of the art in this area is reviewed in Section 2.6.

1.3.3 Navigation Support

Localization and navigation support is very useful in many day to day applica-
tions, but essential in emergency rescue operations. Teams must be able to reach
safely and quickly if conditions become too dangerous and incident commanders




must be able to keep track of their locations [7]. The simple task of getting out
of a building becomes a challenge with little or no visibility due to smoke and
power failure. High levels of mental and physical stress add to the difficulty:
getting lost in a burning or collapsing building can have fatal consequences for
both the rescue personnel and the building’s occupants as oxygen supplies run
out and medical attention is delayed [7]. It has been identified that ‘lost inside’
as a major cause of injuries to fire fighters. It is also reported that disorientation
and failure to locate victims are contributing factors to fire fighter deaths [7].
Therefore providing navigation support for fire fighters in the fire field in a very

important functionality.

A review of navigation support techniques relevant to this study is presented
in Section 6.2.

1.4 Challenges for Localization, Tracking and Navigation Support in
Emergency Situations

As described earlier, localization, tracking and navigation support are key tasks
i WSN based rescue applications. Though, localization and tracking have been
studied heavily in literature, few of practical localization and tracking algorithms
are deployed in emergency environments such as fire situations due to multiple
challenges. The conditions are significantly more demanding than non-emergency
environments. Darkness, smoke, fire, power outages, water and noise can all
prevent a system from working and heavy protective clothing, gloves and face
masks make using a standard mobile computing impossible. Therefore localiza-
tion, tracking and navigation algorithms for fire rescue operations should be able

to deal with following challenges.

Accuracy: Incident Commander and the fire department do the scheduling based
on the accurate locations of the sensors. Accurate localization in a highly

dynamic environment is a challenging one.

Mobility and Tracking: Moving fire fighters should be able to locate and track

in a efficient manner.

Node failures: Nodes in the monitoring field can be destroyed due to the fire
and this can affect the performances of the localization algorithm. Failure
of some sensors should not affect the location estimation of other sensors.




Link failures: More and more signal interferences can be taken place inside
the sensor network so that temporary or permanent link failures can be
taken place. The localization algorithm should be able to overcome these
challenges.

Newly introduced nodes: Nodes can be introduced to the network randomly
by the fire fighters to gain more information of a specific area. In this case,
the localization algorithm should be able to locate the newly introduced

nodes efficiently.

Radio range irregularity: Due to the harsh conditions of the environment,
properties of the air medium can be changed dramatically. Therefore the
communication rage of a sensor may not be an ideal sphere in 3D, but an
irregular surface. The localization algorithm should be able to deal with

the radio range irregularity.

Power efficiency: Each sensor node has a limited computing power, memory
and communication range. Therefore, the localization algorithm should
be able to provide an provide an accurate localization overcoming these

limitations.

Feasibility: The localization algorithm has to be practical enough so that the
its computing cost be affordable by the limited hardware and software sup-

porting.
1.5 Scope

This research is a component of work carried out under NRC (National Research
Council) Grant No. 11-113 entitled "Multipurpose Self-Configurable Indoor Wire-
less Sensor Network for Green Buildings" where the focus is to develop a complete
suite of concepts and solutions for a specific application for WSNs in multi-story
indoor environments. To achieve these main goals, the contribution of this work
is on localization, target tracking and navigation support for emergency rescue
operations. Figure 1.2 shows the overall aspects of the research project and the
highlighted boxes show the contributions of this work.

1.6 Objectives

The overall objective of this research is to develop a suit of algorithms for lo-

calization, tracking and navigation of wireless sensor nodes in multi-story indoor
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Figure 1.2: Overall aspects of the research project
environments in emergency situations.

Specific Objectives

o Characterizing an emergency environment in terms of WSN usage

e Developing a localization algorithm which is applicable to indoor environ-
ments where nodes can be destroyed, added anew and mobile nodes can be

present

e Developing a tracking algorithm to track the mobile nodes in a sensor net-

work

e Developing a navigation algorithm capable of supporting rescue operations

In emergency situations
1.7 Methodology

Our main focus during this research is on how to develop a localization algorithm
for WSNs, which is suited for emergency situations as characterized in Sections
1.2.2, 1.3 and 1.4. Further we develop a tracking algorithm and navigation sup-
port architecture to be used in emergency rescue applications based on WSNs.
These tasks are carried out in three stages.




In Stage 1, we study the localization and localization algorithms paying spe-
cial attention to the DV-Hop algorithm and its improvements. Then we propose
three different novel improved localization algorithms based on the DV-Hop al-
gorithm. Further we compare the simulation results of the proposed algorithms
with the existing improvements. Then we define the key characteristics related
to indoor WSNs in emergency situations and apply the DV-Hop localization al-

gorithm in emergency situations.

In Stage 2, we pay our attention to target tracking in WSNs. First we study
the existing tracking algorithms and implement exiting tracking algorithms. Then
we develop a novel tracking algorithm based on the DV-Hop algorithm and
Kalman filter. Further we compare the simulation results of the proposed al-
gorithms with the existing improvements and apply the tracking algorithm in

emergency situations.

In Stage 3, we pay the attention to navigation support for rescue works. First
we study the existing navigation algorithms for emergency rescue operations.
Then we develop a novel navigation support system for fire fighters. Further we

simulate the algorithm in an emergency environment.

1.8 Organization of the Thesis

The thesis is organized of seven chapters. The relationship between the method-

ology and the thesis organization is illustrated in Figure 1.3.
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efine the key characteristics related to indoor WSNs In emergency
uations Introduction

-~ Study of localization and localization algorithms - -4 Wireless sensor networks
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<4 Proposed novel improved localization algorithms . —localization
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Conclusions
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Figure 1.3: Thesis Organization in relation to Research Methodology
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Figure 2.1: Classification of node localization algorithms

2.2.1 Centralized vs Distributed Algorithms

(Based on the approach of processing the individual inter-sensor measurement
data)

In centralized algorithms each sensor node sends its inter-sensor measurement
information to-a single central processing location where positions of unknown
nodes are calculated. Multi-Dimensional Scaling (MDS) localization algorithm [8]
is a centralized one. In distributed algorithms, each unknown node estimates its
own location inside itself by using inter-sensor information and information col-
lected from neighbors. The DV-Hop [9] algorithm is a distributed one.

Distributed localization algorithms are generally considered to be more com-
putationally efficient and easier to deploy in large scale networks. On the other
hand, centralized algorithms generally provide more accurate localization esti-
mates. Major drawbacks of centralized algorithms are the scalability and the
requirement of higher computational complexity. Most of the distributed local-
ization algorithms can be applied in centralized manner and distributed versions

of centralized algorithms also can be designed for distributed applications [5].

2.2.2 Range Based vs Range Free Algorithms

(Depending on the mechanism used to measure inter-node distances )

Range based localization techniques exploit certain characteristics of signals
exchanged among sensor nodes such as signal propagation times, signal strengths
and angle of arrival. Thereafter, either trilateration or multilateration can be
used to locate the unknown sensor nodes. Well known techniques are Time of
Arrival (TOA), Time Difference of Arrival (TDOA), Received Signal Strength
(RSS) and Angle of Arrival (AOA) [2].




Range free algorithms use estimated distances instead of physical distances in
locating the unknown nodes. Typical Range free localization algorithms include
DV-Hop [9], Centroid [10], Convex [11], MDS-MAP [8] and APIT [12].

Although range based techniques can achieve precise positioning, they require
costly hardware facilities and high energy. Therefore range free localization meth-

ods have attracted significant interest in WSNs.

2.2.3 Event-Driven Localization

Event-Driven localization algorithms are based on events that occur in the mon-
ltoring area, which can be utilized to determine distances, angles, and positions.
Such events can be the arrival of radio waves, beams of light, or acoustic signals
at a sensor node [2]. Lighthouse location system of Romer [13], Multi-Sequence
Positioning (MSP) approach of Zhong et al. [14], spotlight localization system
of Stoleru et al. [15] and improved Asymmetric Event-Driven Localization Algo-

rithm of Wang et al. [16] are some examples of even driven localization algorithms.

2.3 Node Self Localization

Accurate knowledge of node positions in a WSN is a key requirement in most of
the applications. In these applications nodes need to estimate their own position
by processing noisy range measurements relative to anchors. This is called node

self localization.
2.3.1 Range Based Localization

Range based localization techniques exploit certain characteristics exchanged be-
tween sensor nodes signal propagation times, angle of arrival and signal strengths
to measure the distance between sensor nodes [2]. Ranging techniques are used to
take these measurements. Subsequently location estimation is carried out using

ranging measurements obtained.

2.3.1.1 Ranging Techniques

e Time of Arrival (ToA)
Basis of ToA [2] is to measure the signal propagation time with a known velocity to

determine the distance between two sensor nodes (transmitter and the receiver).
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Nodei g t1

Nodej tz

Figure 2.2: Time of Arrival

From Figure 2.2;
distance;; = (to — t1) X v (2.1)
o Twme Difference of Arrival (TDoA)

TDoA [2] uses two different signals with different velocities to determine the

distance between sensor nodes.

Nodei o f1 ts

Nodej t5 ta

Figure 2.3: Time Difference of Arrival
From Figure 2.3;

distance;; = (v1 — va) X (tg — ta — t3 + 1) (

! D
8]
SR

e Angle of Arrival (AoA)
AoA (2] uses an array of spatially separated antennas to discover the signal prop-
agation direction and thereby determine the distance between sensor nodes. This

techniques is bit expensive compared with others.

o Received Signal Strength (RSS)
RSS [2] uses the concept that signal strength deteriorates with the distance trav-
cled. Almost all the sensor nodes have a Received Signal Strength Indicator
(RSSI) which can be used to measure the amplitude of an incoming signal and
in turn estimate the position of the sensor node. The Friis transmission equation
expresses the ratio of the received power P, to the transmission power P, as 2.15.
2
% : Gtafﬁéi (2.3)

Where G, and G, are antenna gains of transmitting and receiving antennas re-
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spectively.

2.3.1.2 Location Estimation

Once the distances between anchor nodes and unknown nodes are found t
ranging techniques, it’s time to determine the location or the position of the 1
known nodes relative to the anchors. For this, either Triangulation, Trilaterat
/ Multilaration or Min-Max algorithm can be used.

e T'rilateration
The unknown node should be somewhere along the circumference of a circle cen- Il
tered at the anchor’s position with a radius equal to the sensor - anchor distance
which was found using one of the ranging techniques. Distance measurements
from three non-collinear anchors are required to obtain a unique location in 2D
space as illustrated in Figure 2.4.

=

Figure 2.4: Trilateration

Let (24, ) be the location of the unknown nade u



Coordinates of the unknown node u can be calculated solving the a
using the following matrix operation.

A e i | SRR Rl
L2 TRl s

B | f-ds—2+ad—si+i
dup — dig — 25 + 23 — 43 + 13
Ly

Yu

7= — A (2.6)
e Mazimum Likelihood Estimation

The unknown node should be somewhere along the circumference of a circle cen-

tered at the anchor’s position with a radius equal to the sensor - anchor distance

which was found using one of the ranging techniques. Distance measurements

from at least three non-collinear anchors are required to obtain a unique location

in 2D space as illustrated in Figure 2.5.

Figure 2.5: Maximum Likelihood Estimation

Let (24, 4u) be the location of the unknown node u an
location of anchor node j. d,; is the distance be \



(xu = wl)z kit (yu = y1)2 = dfle
(Tu — 2)% + (yu — 7 =i
(o zn)z + (Y — yn)2 = dzn

where 7 is the number of anchors in the network.

Coordinates of the unknown node u can be calculated using the following m
operation.

[ mi—%n  Y1—Yn |
To—'T — j
| Zn-1—Zn Yn-1 — Yn |

doy — &2, — a3+ 22 — i+
A2y — d2, — a3 + 22 — g2 + 42
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Yu
o Min-Moaz Estimation method (Bounding Boz algorithm)
Min-Max [17] builds a square given by [z; — dui, ¥i — dui] X [ + duss U +
around each anchor node 4 with the location of (z;,y;). d; is the estim: ed
tance between the unknown node w and the anchor node . Estimated posit;




=

A®
(It /(r,t)‘Az
7 (pime
A®

Figure 2.6: Min-Max Estimation method

where

| = max(z; — du;) (2.11)

== mf\é‘x(ml o du'i)
b= max(y; — du)

N
t = max(y; + dui)

Then the estimated location of unknown node w is the center of the intersection
area.

l+T b+t)
2 )

(@) =(

2.3.2 Range Free Localization
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e Centroid Localization Algorithm
Bulusu et al. [10] proposed the centroid localization algorithm which is a range
free, connectivity-metric method. The algorithm implementation can be divided

into three main steps.

Step 1: Each anchor node transmits a packet containing its location, to all
the sensor nodes within its radio range.

Step 2: Each unknown node collects all the location information received from
anchor nodes (which are one hop away) within a fixed period of time.

Step 3: Each unknown node calculates its position as the centroid of the received

anchor positions given by 2.13

Zmz Z?/i) (213)

e

(:CU: Uu) = (

where (z,,y,) is the estimated localization of the unknown node u, (z;, y;)is the
location of anchor node ¢ and n is the number of anchor nodes which are one hop
away from the unknown node wu.

The centroid localization algorithm is simple but the location accuracy is poor.

o Convexr Localization Algorithm

Doherty el at. [11] proposed the convex position estimation which is based on
connectivity-induced constraints. The main idea is to use the known locations
of anchors to find the unknown locations of sensor nodes by applying proximity
constraints imposed by known connections within a convex set. Provided that the
network connectivity can be represented as a set of convex position constraints,
the mathematical models can be used to generate feasible positions for the nodes

in the network.

e MDS- MAP Localization Algorithm

MDS- MAP is a localization method based on multidimensional scaling (MDS) [8].
It uses connectivity information combined with known positions for certain an-
chor to estimate the locations of unknown nodes in the network. However, MDS-
MAP is an inherently centralized algorithm and is therefore of limited utility in

many applications.

o APIT Localization Algorithm
The basic idea of Approximate Point In Triangulation (APIT) localization algo-
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rithm [12] can be summarized as follows.

First, each a.nc.hor node transmits its location to all the unknown nodes within
its radio range. The unknown node to be localized receives this information.
Secondly, all the possible triangles are formed by connecting every three of these
anchors. Thirdly, test whether the unknown node to be localized is within the
triangle or not. This process should be carried out for all the triangles one by one.
Finally, Center of Gravity (CoG) of the intersection of all the overlap triangles
within which the unknown node resides, will be calculated. This CoG will be

considered as the estimated location of the unknown node.

DV-Hop localization algorithm will be discussed in detail in the following Section.
2.4 The DV-Hop algorithm

The DV-Hop (Distance Vector Hop) Localization Algorithm [9] is a distributed,
connectivity-based, and range free algorithm. Therefore the DV-Hop algorithm
does not require high cost of hardware facilities and energy consumption required
by range-based approaches. Although range based techniques can achieve pre-
cise positioning, accuracy of these techniques such as RSSI and ToA are purely
dependent on the atmospheric conditions such as humidity of the environment.
However the performances of the DV-Hop algorithm does not dependent on such
external conditions. On the other hand the logic behind the DV-Hop algorithm is
very simple so that sensor nodes do not need much energy to run the algorithm.
Due to these plus points of the DV-Hop localization algorithm, we selected this

as the core of our research.

In a sensor network there are two kinds of sensor nodes - anchors whose
locations are known and unknown nodes. The basic idea behind the DV-Hop al-
gorithm is to represent the distance between an unknown node and an anchor as
a product of the average Hop Size and Hop Count. The basic DV-Hop Algorithm

runs in three major steps.

Step 1: Each anchor node broadcasts a packet throughout the network con-
taining its location and a Hop Count value initialized to one. Each receiving
node keeps the minimum Hop Count while discarding higher ones from a partic-
ular anchor node. Each receiving node will increase the Hop Count by one before
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passing the packet onwards. At the end of this process, each node in the network

obtains the minimum Hop Count to every anchor node.

Step 2: Each anchor node estimates its Hop Size using the Hop Count val-
ues to the other anchors. Hop Size is estimated by anchor node i as follows:

e I—L‘ e 2 + == )2
HOp SZ'Z(‘Zl' e Z]T_I \/( J) (y yj) (214)
Zj#i h()pij

where (z;,y;) and (z;,vy;) are the coordinates of anchors i and j respectively and

hop;; is the Hop Count between anchors 7 and j.

Each anchor calculates its Hop Size and broadcasts it to the network. Unknown
nodes save the first value they receive, while transmitting this Hop Size to the
neighbors. This mechanism results in most of the unknown nodes obtaining the
Hop Size of the nearest anchor. At the end of this process, unknown nodes
estimate the distance form each anchor as the product of Hop Size and the cor-

responding Hop Count.

Step 3: Unknown nodes estimate their locations using either trilateration / mul-
tilateration or maximum likelihood estimation after they receive three or more

distance information.

Let (zy,v.) be the location of the unknown node u and (:cj-,yj) be the known
location of anchor node j. d,; is the distance between them. Then;

%]

(Tw — 21)° + (Y — )2 = &5
2]

(T — 22)* + (Yo — 1) = &2y

@y $n)2 e (= '!I’n)2 = d-?m

where n is the number of anchors in the network.

Coordinates of the unknown node u can be calculated using the following matrix
operation.
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Figure 2.7 presents an example with three anchor nodes Al, A2 and A3.
Anchor Al, knowing its Euclidean distances (50m and 110m) and Hop Counts
(two hops and six hops) to the other two anchor nodes, computes a Hop Size
of (50 4 110)/(2 + 6) = 20, which represents the estimated distance of a hop in
meters. In a similar fashion, A2 computes a Hop Size of 18.6 and A3 computes a

Hop Size of 173

d(Ai,A2) = 50
d(AzAy) = 80
d(A,A3) = 110

Az

Figure 2.7: Example of DV-Hop Localization algorithm

Hop Sizes are propagated via controlled flooding to ensure that each unk:
node will only use one Hop Size, typically from the closest anchor. For exan
sensor node U in Figure 2.7 uses the Hop Size obtained from A2, that i JS_ !
estimate its distances to the three anchors by multiplying the Hop Size
Hop Counts (lea.dlng to dlsta.nces 3 18 6 to Al 2 x 1 .6 to A2
43). _ :
of U.




2.5 Review of Improvements to the DV-Hop Localization Algorithm

Considering these facts, to improve the localization accuracy of DV-Hop Algo-
rithm scholars have paid their attention in several aspects; modifying the Hop

Size, deployment of anchors and other strategies.

2.5.1 Improvements using Modified Hop Size

o Wang et al. [18] extended the DV-Hop algorithm into 3D space and addressed
its shortcomings to improve the performances. It modified the Hop Size and per-

hop distance calculation to achieve improved localization accuracy.

o Chen et al. [19] proposed a method to improve the localization accuracy of
DV-Hop algorithm by modifying the Hop Size using averages. . In addition it
adopted the 2D hyperbolic localization scheme instead of traditional trilateration

during the process of localization.

e Li et al. [20] used weight of anchors to improve the localization accuracy of
DV-Hop algorithm. The weight of each anchor was a production of Hop Size
weight and Distance weight. Here Hop Size weight reflected the accuracy of hop
size provided by the anchors. The Distance weight reflected the distance between
the anchor node and the unknown nodes. Finally the location was calculated

using weighted least square method.

o Zhang et al. [21] improved the localization accuracy by modifying the Hop
Size based on minimum mean square error criterion. It also suggested a further
improvement by allocating weights to Hop Sizes of anchors in the reserve order

of Hop Count between unknown nodes and anchors.

o Lee et al. [22] improved the accuracy of DV-Hop algorithm by introducing
a weight which inversely proportional to the differences of Hop Counts. The

weight also reflected the characteristic of the network.

e Hu et al. [23] introduced a threshold M, it used the weighted average Hop Size
of anchor nodes within M hops to calculate the average Hop Size of unknown
nodes. In order to further improve the algorithm, it estimated the location of
anchors considering as unknown nodes using the estimated locations of unknown
nodes which acted as anchors. Finally positioning results were corrected using
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that correction factor.

e Bao et al. [1] improved the localization accuracy of the DV-Hop algorithm
by modifying the Hop Size of anchors with an error correction value. Then the

Hop Sizes used by unknown nodes were modified with a weight.

e Xiang et al. [24] used residual weighting algorithm to estimate the position
of unknown nodes by improving the calculating mode of average hop distance.
In this process, for the position estimation with high residual error, a relatively

low weight was assigned.

o Lin et al. [25] introduced an improved DV-Hop algorithm using three main
approaches. Firstly, Hop Size among anchor nodes were modified using least
squares method. Secondly, Hop Size used by unknown nodes were modified by
weighting the N received Hop Sizes from anchor nodes. Finally, the iterative
numerical method with the initial values of the estimated node location was pre-

sented by setting proper threshold.

o Chen et al. [26] presented an improved DV-Hop algorithm with four major
steps. Firstly, some anchor nodes were placed at the border of monitoring area.
Secondly, Hop- Size between anchor nodes was modified, and the average Hop
Size used by each unknown node for estimating its location was modified through
weighting the received average one-hop distances from anchor nodes. Finally, the
particle swarm optimization was used to correct the position estimated by the
2D hyperbolic localization algorithm, which made the result closer to the actual
position.

2.5.2 Improvements using Controlled Deployment of Anchor Nodes

e Yin et al. [27] focused on how the placement and quantity of anchor nodes
effect on localization error and suggested an anchor node placement strategy to

improve the localization accuracy of DV-Hop algorithm.

e Zheng et al. [28| proposed an anchor node deployment strategy in order to
reduce the localization error of DV-Hop algorithm. First, an anchor node was
placed in the middle of square area and the other nodes are equally placed on
the circle whose center was the center of square area and radius was half of the
side length. That placement strategy was implemented with long range DV-Hop
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algorithm.
2.5.3 Improvements combining RSSI with the DV-Hop Algorithm

e Fang et al. [29] combined RSSI ranging technology with the basic DV-Hop al-

gorithm to improve its performance.

e Ding et al. |30] proposed an RSSI based Hop Count calculation method, that
could accurately reflect the distance between adjacent nodes and thereby the lo-

cation error could be reduced than the DV-Hop algorithm.

e Yi et al. [31] improved the DV-Hop localization accuracy based on a regular
moving anchor node and RSSI ranging technique. In the proposed RMADV-Hop
algorithm, the moving anchor node virtually created an even distribution of an-

chors.

e Tian et al. [32] incorporated RSSI with DV-Hop to propose a new algorithm
called RDV-Hop. The idea was to improve the localization accuracy of DV-Hop
algorithm by combining the advantages of range based techniques to minimize

the disadvantages of range free algorithms.

o Wang et al. [33] improved the localization accuracy of DV-Hop algorithm by
incorporating the advantages of RSSI method with DV-Hop algorithm. A set of
newly upgraded anchors will be generated using the original set of anchors with
the help of RSSI method. On the other hand a pre-set priority level was given to
each anchor where priority level for newly upgraded anchors were lower than that
of original anchors. Anchors with higher priority had the highest precision. Fi-
nally, trilateration or minimum least square method was used to find the locations

of unknown nodes relative to the selected anchors with highest priority.

2.5.4 Improvements using Other Techniques

e Kumar et al. [34] adopted a weighted least square algorithm in solving n equa-
tions for location estimation of unknown nodes using n anchors, which replaced
the third step of DV-Hop algorithm. Further improvements was achieved by us-

ing extraneous information by the equations.

e Wang et al. [35] used location known regulated nodes or markers to rectify
the location error of unknown nodes by generating an error vector and thereby
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improving the localization accuracy of DV-Hop algorithm. The regulated nodes

could be placed either randomly or manually.

e Chen et al. [36] proposed an improved DV-Hop algorithm. The main prin-
ciple of the improved scheme was estimation distance of the hops according to
the number of neighbors in the same block. In order to reduce the localization

error, it used weighted node distances to calculate the node’s final coordinate.

o Xu et al. [37] proposed and improved DV-hop algorithm, especially focusing
on non-uniform node distribution. The upper bound of the position area was
determined and suitable anchors participating location were selected among the
local position area. The Average Distance Per-Hop (ADPH) could be calculated
using the suitable anchors in the local area, which was rarely affected by the

non-homogeneous density.

e Zhou et al. [38] proposed NDV-Hop algorithm as an improved DV-Hop al-
gorithm. Firstly, average hop distance was calculated by taking all the anchor
nodes into account. Secondly, the position information of unknown nodes was
amended by adopting error value of the anchor nodes. Finally, the position infor-
mation that the out-of-scope node was revised by taking boundary coordinates

as its potion information.

e Quanrui et al. [39] proposed a new liner approximation model for the rela-
tionship between Hop Count and the estimated distance based on the DV-Hop
algorithm. Based on the new assumptions, Hop Size calculation was changed and
estimated distance was calculated differently depending on the fact that commu-

nication range was known or not.

e Gao et al. |[40] proposed the CDDV-Hop algorithm which combined the close
degree model with basic DV-Hop algorithm to improve the localization accuracy.

e Liu et al. [41] proposed the VAH-DV-Hop algorithm to minimize the local-
ization error of DV-Hop algorithm. The algorithm made the hops (from the
unknown nodes to the anchor) multiplied by the average hop distance belonged
to the corresponding anchor instead of getting the multiplication between hops
(from the unknown nodes to the anchor) and average hop distance of the nearest

anchor for the unknown node.
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e Gui et al. [42] proposed a Selective 3 Anchor DV-Hop algorithm with the follow-
ing idea. The unknown node first selected any three anchors to form a 3-anchor
group. Then it calculated the candidate positions based on each 3-anchor group
and finally according to the relation between candidate positions and minimum

hop counts to anchors, the unknown node chose the best candidate position.

o Agashe et al. [43] studied the performance of DV-Hop algorithm in irregu-
lar shaped areas and worked out for localization accuracy for the same. In the
proposed Optimum DV-Hop algorithm, a selection criteria for anchors in the pro-

cess of locating the unknown nodes was proposed.

e Yan et al. [44] proposed a novel approach that used principal component analy-
sis in order to eliminate the impact of multicollinearity and noise while reducing
its localization error. Principal component analysis method is effective in rectify

the defects in least square estimation caused by collinearity and noise.

o Li et al. [45] divided the network into small regions using the Voronoi dia-
gram which prevented broadcast storm and reduced the overall network traffic.
After that, under the constraints such as number of hops and the distance from
the unknown node to anchors, the grid scanning method and iteration operation

were used locate the unknown nodes.

e Mao et al. [46] proposed and improved DV-Hop algorithm called Area Divi-
sion based semi-auto DV-Hop localization algorithm (ADBSA DV-Hop). Several
ideas were employed to improve the localization accuracy such as semi-auto av-

erage size of per hop, area division and sticking to border.
2.6 Overview of Target Tracking in WSNs

Target tracking is the function of tracking a moving object in a WSN. To be able
to track the moving object, at least three or more sensors in the network required
to sense the object simultaneously. A tracking system can be divided mainly into
three subsystems, namely sensing subsystem, tracking subsystem and communi-
cation subsystem [6]. The sensing subsystem is used to sense the object. The
tracking subsystem runs the prediction based algorithm which is used to trace the

path of the moving object. The communication subsystem shares the collected
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data among nodes and fusion centers.

Due to limited resources of sensors, tracking of a moving object has become
a challenging problem in WSNs. Because of this challenging nature, such object

tracking sensor networks are a spring of research opportunities.

In the first part of this Section we study few of those such research efforts on
target tacking in WSNs.

2.6.1 Related Work

Many scholars have proposed different target tracking algorithms considering and
prioritizing different aspects such as energy conservation and optimization, accu-

racy and communicational cost. Few of those algorithms are listed below.

o Tsai et al. [47] proposed a protocol to track a mobile object in a sensor network.
The work was concentrated on how to query target tracks and obtain the tar-
get position effectively. The mobile user can obtain the tracking object position

without broadcast query.

e Zhao et al. [48] proposed a novel weighted distance based node selection method
for bearings-only sensors in WSNs. Based on the probability distribution func-
tion of predicted target state and the bearing error of a sensor itself, the sensor

with minimum weighted distance was activated in the tracking process.

e Oh [49] developed a scalable real-time multi-target tracking algorithm that is
autonomous and robust against transmission failures, communication delays and
sensor localization error. The algorithm was based on a rigorous probabilistic

model and an approximation scheme for the optimal Bayesian filter.

e Zhou et al. [50] considered the problem of collaborative target tracking in WSNs
in a framework of quantized measurement fusion. First, the measurement in each
local sensor was quantized by probabilistic quantization scheme and transmitted
to a fusion center. Then, the quantized messages are fused and sequential impor-

tance resampling particle filtering was employed to estimate the target state.

® Yeow et al. [51] looked into efficient energy utilization of a target tracking sen-
sor network by prediction a target’s trajectory through experience. While this
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was not new, the chief novelty came in conserving energy through both dynamic
spatial and temporal management of sensors while assuming minimal locality in-

formation.

o Teng et al. [52] proposed an algorithm that exploited measurements to simul-
taneously localize the detecting sensors and track the target. A general state
evolution model was employed to describe the dynamical system with neither
proper knowledge of the target moving manner nor precise location information
of the sensors. The joint posterior distribution of the parameters of interest was
updated online by incorporating the incomplete and inaccurate measurements
between the target and each of the sensors into a Bayesian filtering framework.
A variational approach was adopted in the framework to approximate the filter-
ing distribution, thus minimizing the inter-cluster communication and the error

propagation.

e Wang et al. [53] proposed a new tracking framework, called FaceTrack, which
employed the nodes of a spatial region surrounding a target, called a face. In-
stead of predicting the target location separately in a face, authors estimated the
target’s moving toward another face. An edge detection algorithm was proposed
to generate each face further in such a way that the nodes can prepare ahead of

the target’s moving.

o Lin et al. [54] proposed an adaptive energy efficient multisensory scheduling
scheme for collaborative target tracking in WSNs. It calculated the optimal sam-
pling interval to satisfy a specification of predicted tracking accuracy, selected
the cluster of tasking sensors according to their joint detection probability and
designated one of the tasking sensors as the cluster head for estimation update
and sensor scheduling according to a cluster head for estimation update and sen-

sor scheduling according to a cluster head energy measure function.

e Xu et al. [55] studied the problem of tracking signal emitting mobile targets
using navigated mobile sensors based on signal reception. The mobile sensor con-
troller utilizes the measurement collected by a WSN in terms of the mobile target
signal’s time of arrival (TOA). The mobile sensor controller acquired the TOA
measurement information from both the mobile target and the mobile sensor for
estimating their locations before directing the mobile sensor’s movement to follow

the target.
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o Wang et al. [56] proposed a distributed energy optimization method for tar-
get tracking applications. Sensor nodes were clustered by maximum entropy
clustering. Then the sensing field was divided for parallel sensor deployment op-
timization. For each cluster, the coverage and energy metrics were calculated
by grid exclusion algorithm and Dijkstra’s algorithm, respectively. Cluster heads
perform parallel particle swarm optimization to maximize the coverage metric

and minimize the energy metric.

o Masazade et al. [57] studied the problem target tracking based on energy read-
ing of sensors. Authors minimized the estimation error by using an Extended
Kalman Filter (EKF). The Kalman gain matrix is obtained as the solution to an
optimization problem in which a sparsity promoting penalty function was added
to the objective. By using a sparse Kalman gain matrix only a few sensors send

their measurements to the fusion center, thereby saving energy.

o Oka et al. [58] proposed a novel algorithm for target tracking using signal
strength measurements by a WSN in a power efficient manner. First. authors
proposed a tandem incremental estimator that learns and tracks the radio envi-
ronment of the network and provided that knowledge for the use of the tracking
algorithm. Secondly, authors reduced the unbiased tracking error by exploiting
the co-dependencies in the motion of several targets via a fully distributed and

tractable particle filter.

o Wang et al. [59] presented an energy efficient selection of cooperative nodes. In
the proposed method, the target detection probability was estimated by single
node processing based on particle filter. Then an objective function for collab-
orative target tracking in WSNS was constructed according to the information

utility and remaining energy of sensor nodes.

e Wang et al. [60] presented a new target tracking approach which avoids the
instability problem and offered superior tracking performances. Authors first
proposed an improved noise model which incorporates both additive noises and
multiplicative noises in distance sensing. Then they use a maximum likelihood
estimator for pre-localization to remove the sensing nonlinearity before applying

a standard Kalman filter.
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e Djuric et al. [61] presented particle filtering algorithms for tracking
target using data from binary sensors. Authors proposed and implemen
tracking by employing auxiliary particle filtering and cost reference particle
tering. Further, authors extended the method to include estimation of cons
parameters and derived the posterior Cramer-Rao bounds for the states.

The main objective of this literature review on tracking algorithms is to find
a suitable method to use with DV-Hop algorithm to produce a novel tracking
algorithm in WSNs. Though there are so many techniques presented for tracking
a target in a WSN, most of them are centralized and dependent on range-based
techniques to run the algorithm. Therefore concepts in the tracking algorithms
based on these characteristics can not be incorporated with the DV-Hop algo-

rithm. Ultimately we picked pre-localization technique presented in [60] to com-
bine with the DV-Hop algorithm.

We present a novel tracking algorithm which uses some of the concepts in [60]
in Chapter 5 and we implement and compare the results with [61].
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Chapter 3

PERFORMANCE EVALUATION OF THE DV-HOP
ALGORITHM AND ITS S

3.1 Introduction

This Chapter presents a comprehensive study of the DV-Hop localization algo-
rithm. In Chapter 2 we carried out a detailed study of different localization tech-
niques. Of these, we use the DV-Hop algorithm as the core localization technique
for this research. The DV-Hop is a range free localization algorithm, and there-
fore does not need expensive hardware and high energy consumption. Further, it
is a distributed algorithm so that the network does not need a central component
to estimate the locations of senor nodes. The logic behind the DV-Hop algorithm
is also a simple one which results in a low computational cost. Considering these

facts, the DV-Hop algorithm is a good candidate for our application environment.

We introduced the DV-Hop algorithm and its existing improvements in Chap-
ter 2. In this Chapter we analyze behavior of the DV-Hop algorithm and its im-
provements in depth. First we analyze the shortcoming of the DV-Hop algorithm
and then the localization accuracy of the same with the variation of anchor nodes,
total number of nodes and radio range. The behavior of the DV-Hop algorithm in
different shaped environments is studied followed by a study in 3D environments.
Finally we compare the performances of a few selected localization algorithms in
literature. Our objective is the evaluation of these algorithms in a common set

of comparable scenarios, which is not available in literature.
3.2 Simulation Environment

To evaluate the performance of the DV-Hop algorithm and its improvements,
Matlab based simulations were used. The base scenario for simulation is one
where both anchors and unknown nodes are uniformly distributed in a 100m X
100m area, with each node having a radio range of 22m. In literature most of the
researchers have used a simulation environment such as this to run and simulate
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their algorithms [9], [26] and [20]. This is illustrated in Figure 3.1.
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Figure 3.1: Distribution of sensor nodes in the monitoring area

Localization error and localization error variance are used to evaluate the
accuracy and the stability of the network. In most of the simulations, a scenario
of 200 nodes, each having a radio range of 22m in a 100mx100m area is used.
Then, the DV-Hop algorithm is studied for its performance by varying one at a
time, the anchor ratio (AR), the total number of nodes (N) and the radio range
(R) of the nodes as summarized in Table 5.1. All the simulation results are

averaged over 100 runs.

Table 3.1: Simulation Instances

Figure No | Total Number of Nodes | Anchor Ratio(%) | Radio Range(m)
(N) (AR) (R)

3.6(a),(b) | 200 variable 5-40 22

3.7(a),(b) | variable 100-400 10 22

3.8(a),(b) | 200 10 variable 15-40

3.3 Analysis of Shortcomings of the DV-Hop Algorithm

Even though the DV-Hop algorithm is an attractive option for the localization
of nodes in a wireless sensor network due to its simplicity, it suffers from poor
accuracy. This is due to several fundamental reasons. This Section will analyze
these facts in depth.

e Lstimation error of Average Hop Size:
The accuracy of the DV-Hop localization algorithm depends on the distribution
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of sensor nodes. If the node distribution is such that the inter-node distances
are nearly equal, the estimated average Hop Size of the network will be accurate
resulting in a low localization error. On the other hand, if the node distribution
is uneven, the algorithm’s accuracy is poor. In the real environment, this even
distribution of nodes would not be easy to achieve and hence may result in un-

acceptable positioning errors.

Uniform and non-uniform sensor node distributions are illustrated in Figure
3.2(a) and Figure 3.2(b) respectively. Figure 3.2(c) shows the localization error
comparison for uniform and non-uniform sensor node distributions.

100 3 3 100

A i 1
s +  Anchor Nodes + AnchorNodes ||
90 % *  Unknown Nodes 90 I UnimomchesL',
o L3 . + 7 ]
80f . : s o 80r -
Ciuaery sy .
70} 4 B FL . 1 70 * * 1
. : : "
60 % . “ % o -~ 60 % 1
+ . 3 ST . - * !
50 . 2 . Sl - 50 1
40 Gt o o 1 40 , 1
30 e 5 9% it o}, U s
¢ £ . 3 ) .
20 : . - 204" e 4
. . o
[0} A * J 1 10 A A 4
. + o e 0 .
0 et S ot D0 e g LA chi SR G e .
0 10 20 30 40 50 60 70 80 90 100 0 10 20 30 4 5 6 7 80 S0 100
(a) Uniform distribution of nodes (b) Non-uniform distribution of nodes
50
—&— unifrom distribution
—*— non-uniform distribution
45 -
&
o
5 40
-
w
=3
]
B
53
3
Q
-
30
25 . : i : i \
5 10 15 20 25 30 35 4
Number of Anchor Nodes

(c) Localization error with different node distribu-
tions

Figure 3.2: Effect of scnsor node distribution in DV-Hop localization (Total Number of Nodes == 100, Radio
Range — 50m, Simulations = 100 times)

It is evident that localization error of the DV-Hop algorithm in a uniform
sensor distribution is significantly less than that of a non-uniform distribution of
sensors. In addition to average hop size estimation error, there may be connectiv-
ity gaps in the sensing area due to the non-uniformity of the sensor distribution,

which leads to further errors and some nodes not being localized.
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It is evident that localization error of the DV-Hop algorithm in a uniform
sensor distribution is significantly less than that of a non-uniform distribution of
sensors. In addition to average hop size estimation error, there may be connectiv-
ity gaps in the sensing area due to the non-uniformity of the sensor distribution,
which leads to further errors and some nodes not being localized.
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e Fstimation error of per-hop distance:
Imagine the scenario illustrated in Figure 3.3, with A being the nearest anchor

for unknown nodes U; and U; which are within the communication range of A.

\
|
|
I Radio

4 range of A

Figure 3.3: Communication between an anchor and unknown nodes
With DV-Hop algorithm;

dy = HopSizes X Hops = HopSizes X 1
dy = HopSizes X Hops = HopSizeq X 1 (3.1)
dl = dg

In the actual scenario d; and ds are not equal but in DV-Hop estimation these
two are considered as equal resulting in subsequent positioning errors. Anchors
which are far away from an unknown node contribute more to this error than

anchors which are nearby.

e Dependency on number of anchors and their distribution:
Analysis of the DV-Hop algorithm reveals that its localization accuracy depends
on the anchor - to - node ratio (anchor ratio) and their distribution. When the
anchor ratio of a network is high, localization accuracy is higher. Even distribu-
tion of anchors throughout the network also improves the localization accuracy.
Since the cost of an anchor is significantly higher than a normal sensor node, it

is not an option to increase the anchor node density in real life.
Figure 3.2(c) illustrates the localization error variation of DV-Hop algorithm with

different number of anchor nodes while keeping the total number of nodes and

the radio range of a sensor node a constant. It is evident that the localization
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error reduces with increasing number of anchors.

e Connectivity problem:
The DV-Hop algorithm estimates the locations of unknown nodes based on the
connectivity information of the network. Connectivity problems due to node fail-
ures or environmental conditions such as obstacles affect the localization accuracy

significantly. Figure 3.4 illustrates this concept.

Hops= 2 Link Failure

Hops= 4

(a) No link failure (b) Link failure

Figure 3.4: The effect of link failures in localization accuracy of DV-Hop algorithm

With DV-Hop algorithm;

when there are no link failures;

D = HopSize, x Hops = HopSize, X 2 (3:2)
when the link is failed;

D = HopSize, x Hops = HopSize, X 4 (3.3)

Therefore it can be seen that localization accuracy of the DV-Hop algorithm

depends heavily on the proper connectivity among nodes.
Y &

o Radio Range Irregqularity:
In the DV-Hop algorithm, it is assumed that the communication rage of all nodes
are equal and regular. However in reality, the sensor nodes’ communication is
not a regular sphere in 3D space. Due to such radio range irregularities the
localization accuracy deteriorates compared to what is expected theoretically.

Figure 3.5 illustrates the radio range irregularity of sensor nodes.
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Figure 3.5: Illustration of Radio Range Irregularity

3.4 Evaluation Criteria for Localization Algorithms

In this Section, few matrices that are used in measuring the performances of
localization algorithms are described.

3.4.1 Localization Accuracy

o Average Localization Error

n

e Root Mean Square Error
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e Error normalized to the radio range R
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e Localization Error Variance
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3.4.2 Communication Cost

Communication cost of a localization algorithm is represented by the number of

packets transmitted during the process of localization.

3.4.3 Computational Cost

Computational cost of a localization algorithm is represented as the computa-

tional time that takes for the process of localization.

3.5 Behavior Analysis of Localization Accuracy

3.5.1 Simulation Scenarios

To evaluate the performance of the DV-Hop algorithm, Matlab based simulations
were used. In the simulation environment both anchor and unknown nodes are

distributed randomly according to a uniform pdf as show in Figure 3.1.

Localization error and localization error variance are used to evaluate the
accuracy and the stability of the network. A scenario of 200 nodes, each having a
radio range of 22m in a 100m x100m area is used. Then, the DV-Hop algorithm
is studied for its performance by varying one at a time, the anchor ratio (AR), the
total number of nodes (N) and the radio range (R) of the nodes as summarized

in Table 5.1. All the simulation results are averaged over 100 runs.

Table 3.2: Simulation Instances

Figure No | Total Number of Nodes | Anchor Ratio(%) | Radio Range(m)
() (AR) (R)

3.6(a),(b) | 200 variable 5-40 22

3.7(a),(b) | variable 100-400 10 22

3.8(a),(b) | 200 10 variable 15-40
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3.5.2 Analysis of Results

When analyzing the results of Figure 3.6,3.7 it is evident that localization accu-
racy of the DV-Hop algorithm,;

e improves with the increase of the number of anchors - Figure 3.6
e improves with the increase of the total number of nodes - Figure 3.7

When more anchors are distributed along the monitoring field. there are more
and more unknown nodes with anchors as neighbors (one-hop away). Therefore
localization error results due to multiple hops, reduces resulting a much accurate
location estimation. Hop Size estimation itself becomes more accurate with the
increase of the number of anchors. Localization error variance in Figure 3.6(b)
also reduces with the increase of number of anchors, guaranteeing more consistent
performance.

Accuracy of the DV-Hop localization algorithm depends on the distribution
of sensor nodes. If the node distribution is such that the inter-node distances
are nearly equal, the estimated average Hop Size of the network will be accurate
resulting in a low localization error. On the other hand, if the node distribution
1s uneven, the algorithm’s accuracy is poor. When the total number of nodes
increases the inter-node distances become nearly equal to produce a more accurate
estimation of Hop Size, resulting low localization error. Similarly, Localization
error variance in Figure 3.7(b) also reduces with the increase of number of anchors,
guaranteeing more consistent performance.

Localization error variation with radio range in Figure 3.8(a), is a tricky one.
Though the percentage localization error with respect to radio range decreases
with the increase of radio range, RMSE increases with the increase of radio range.
This means that sensor nodes with lower radio range produce more accurate
localization. However, lower radio ranges can make coverage gaps in the network
leaving some unknown nodes without localizing. On the other hand, a WSN with
lower radio range with full coverage, implies that the network is almost uniform.
This results in a better estimation of the Hop Size and hence a lower localization
error. A similar effect can be seen relative to the variation of localization error

variance as in Figure 3.8(Db).




3.6 Behavior Analysis of the DV-Hop in Different Shaped Environ-
ments

3.6.1 Simulation Scenarios

In this Section, we analyze the performance of DV-Hop algorithm in different

shaped areas. In each area, node density (number of nodes/area) remains a

constant.
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Figure 3.11: DV-Hop on a U shaped area (Number of Nodes = 145, Anchors = 17)

Figures 3.9, 3.10, 3.11, 3.12, 3.13 shows the node distribution in square shaped
area, L shaped area, U shaped area, rectangular shaped area and O shaped area

with localization error of each sensor node.
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Figure 3.13: DV-Hop on a O shaped area (Number of Nodes = 196, Anchors = 24)
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3.6.2 Comparison of Performance

Figure 3.14 shows the comparison of localization errors when DV-Hop algorithm
is applied in different shaped environments while keeping the node density a
constant. It is evident that localization error in O shape and square shaped is
minimum compared to the others.




3.7 Influence of Anchor Placement

It is already clear that the localization error of DV-Hop algorithm reduces with
the increase of number of anchors as in Figure 3.6(a). Therefore, our main focus in
this Section is to investigate the influence of placement of anchors on localization

accuracy of the DV-Hop algorithm.
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Figure 3.15: Influence of anchor placement on localization accuracy of DV-Hop algorithm (Number of Nodes =
200, Anchors = 20, Radic Range = 22m)

Figure 3.15 is used to illustrate the effect of the anchor placement on localiza-
tion accuracy of the DV-Hop algorithm. Here the placement anchors is changed
while keeping the placement of unknown nodes same in all the four configurations
and evaluate the percentage localization error. Through simulations, it is evident
that the localization error is associated with the placement of the anchors. The
more regularly the anchors are placed, the lower the localization error. On the
other hand, the more irregularly anchors are placed, the bigger the localization
error. Therefore it is a fair conclusion to make that when anchors are placed

regularly, localization error of DV-Hop algorithm reduces.




In order to further investigate this argument, we evaluate the localization
error variation for few sensor networks with regular anchor placement in Figure

3.16 while keeping the known node distribution the same.
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Figure 3.16: Influence of regular anchor placement (a)Anchors distributed randomly (b)Anchors placed on a
grid (c)Anchors placed on diagonal (Number of Nodes = 200, Anchors — 20, Radio Range = 22m)

After analyzing the results of Figure 3.16, it is very clear that localization
error of DV-Hop algorithm can be considerably reduced by placing the anchors

regularly throughout the monitoring area.

One of the design optimization strategies is to deterministically place the an-
chor nodes in order to meet the desired performance goals. Therefore network
topology can be established at setup time. However, in many WSNs applications
sensors deployment is random and little control can be exerted in order to en-
sure coverage and yield uniform node density while achieving strongly connected
network topology. Therefore, controlled placement is often pursued for only a
selected subset of the employed nodes with the goal of structuring the network
topology in a way that achieves the desired application requirements. On the
other hand in some applications random distribution of anchors is the only feasi-

ble option.

Considering most of the practical applications, we combined the regular an-
chor placement with random deployment to produce a hybrid anchor placement
scheme. Figure 3.17 shows the comparison of localization error of the three an-

chor placement schemes.

Optimal anchor placement is a challenging problem in DV-Hop based localiza-
tion. Through simulations, Hybrid method is the best way to place the anchors.
Therefore, our suggestion is to place a portion of anchors along the border of the
monitoring area and rest to deploy randomly inside the monitoring area.
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are placed only along the border (c)Potion of anchors are placed along the border and rest are randomly deployed
inside the monitoring area (Number of Nodes — 200, Anchors = 20, Radio Range — 22m)

3.8 Grid based Sensor Networks

Sensors can generally be placed in a monitoring area deterministically or ran-
domly. The choice of the deployment scheme depends highly on the type of sen-
sors, application and the environment that the sensors will operate in. Controlled
node deployment is viable and often necessary when sensors are expensive or when
their operation is significantly affected by their position. Controlled deplovment
is usually pursued for indoor applications of WSNs. Deploying sensors on a grid

is such a controlled deployment scheme which is suitable for indoor environments.

In this Section, we will evaluate the performance of DV-Hop algorithm in the
process of locating the grid based sensor nodes. Though sensors are placed on a

predefined grid, they are still placed on randomly selected grid points.

Figure 3.18 illustrates three scenarios of grid based networks with respective
localization error. A mechanism to improve the localization error of grid based

sensor networks will be presented in the next Section.
3.9 Effect of Radio Range Irregularity on DV-Hop

Radio irregularity is a common and non-negligible phenomenon in wireless sensor

networks. It results in irregularity in radio range as shown in Figure 3.5.

Radio irregularity is caused by two categories of factors: devices and the
propagation media. Device properties include the antenna type (directional or
omni-directional), the transmit power, antenna gains (at both the transmitter
and receiver), receiver sensitivity, receiver threshold and the Signal-Noise Ratio
(SNR). Media properties include the media type, the background noise and some
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Figure 3.18: (a)25 nodes on a grid (Anchors = 5, Radio Range = 30m) (b)64 nodes on a grid (Anchors = 10,
Radio Range = 20m) (c)100 nodes on a grid (Anchors = 20, Radio Range — 15m)

other environmental factors, such as the temperature and obstacles within the
propagation media.

We modeled the radio range irregularity by taking the difference between the
actual radio range and the theoretical radio range, as a Gaussian random
able [62]. Variance between actual and the theoretical radio range is a crit
measurement of the radio irregularity as shown in Figure 3.19. There
apply this radio range irregularity model with different variances be:
and the theoretical radio range in DV-Hop localization process.

The DV-Hop localization algorithm assumes a Sphau : o
study in Figure 3. 20 shows that the perfcrmame, :
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3.10 DV-Hop in 3D Environments

In a 2D space, at least three anchor nodes are required to determine a position
of an unknown node using the DV-Hop algorithm. In a 3D space. at least four
anchor nodes are required. In 3D localization same method of DV-Hop algorithm

can be used as defined in 2D with slight modification.
3D DV-Hop Algorithm runs in three major steps.

Step 1: Each anchor node broadcasts a packet throughout the network con-
taining its location and a Hop Count value initialized to one. Each receiving
node keeps the minimum Hop Count while discarding higher ones from a partic-
ular anchor node. Each receiving node will increase the Hop Count by one before
passing the packet onwards. At the end of this process, each node in the network

obtains the minimum Hop Count to every anchor node.

Step 2: Each anchor node estimates its Hop Size using the Hop Count val-

ues to the other anchors. Hop Size is estimated by anchor node i as follows;

z_-,';es Vi —25)? 4+ (v —95) + (2 — 25)°
Zj;éi hop;;

where (2, i, 1) and (@, y;, 2;) are the coordinates of anchors ¢ and j respectively

Hop Size; = (3.9)

and hop; is the Hop Count between anchors ¢ and j.

Each anchor calculates its Hop Size and broadcasts it to the network. Unknown
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nodes save the first value they receive, while transmitting this Hop Size to the
neighbors. This mechanism results in most of the unknown nodes obtaining the
Hop Size of the nearest anchor. At the end of this process, unknown nodes

estimate the distance form each anchor as the product of Hop Size and the cor-
responding Hop Count.

Step 3: Unknown nodes estimate their locations using either trilateration /

multilateration or maximum likelihood estimation after they receive four or more
distance information.

Let (Zu,Yu, 24) be the location of the unknown node u and (z;,v;, 2;) be the

known location of anchor node j. d,; is the distance between them. Then;

(1'1; 55 £n)2 oo (yu = yn)2 =k (zu = 371)2 T 12m

where n is the number of anchors in the network.

Coordinates of the unknown node u can be calculated using the following matrix

operation.
Tl — Ty Y1 — Yn 21— Zn
L2 — Tp Y2 — Yn 22 — Zn
A=—2x (3.10)
L Tn-1—Tn Yn-1—Yn Z<Zn-1— 2 |
2 2 2 2 D ip 0 SR ek ]
dul R Clun — Iy ar Tn — Y1 25 Yn — 51 ~n
de, —d2 — g2bpd i A
u2 un 2 n 2 n R Sy .
B— (3.11)
2 2 =D DD PR ] b
‘-u(n—'l) £ dun S ‘l’n—l i 3'11 yn—l s yn. “n—1 + “n.
Ty
T A\—=1 4T .
B= | v, |=(AA)AB (3.12)
Su

Figure 3.22 shows the distribution of sensor nodes in a 3D space.
Figure 3.23 shows the localization error and error variance variation after
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Figure 3.22: Sensor node distribution in a 3D environment

applying the 3D DV-Hop algorithm for the node distribution shown in Figure
3.22
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Figure 3.23: (a)Localization error with different number of anchors (b)Localization error variance with different
number of anchors (Nodes = 200, Radio Range = 50m, Area = 100mx100m x 100m)

3.11 Performance Analysis of Selected Improved DV-Hop Algorithms

In this Section we evaluate the performances of five selected improved DV-Hop
algorithms from literature. Localization accuracy of each algorithm is compared
through simulations.

3.11.1 An Improved DV-Hop Localization Algorithm for Wireless
Sensor Networks (DV-Hop Average)

This algorithm is based on the work done in [19]. We refer to this algorithm as
"DV-Hop Average".
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