






































































































































Method
In [19], steps 2 and 3 of the basic DV-Hop algorithm have been changed. In step 

2, all the anchors will broadcast its Hop Size in the format {ID. HopSizei}. Each 

unknown node keeps the Hop Size information of each anchor while discarding 

the duplicate packets. Then each unknown node calculate its Average Hop Size 
as follows.

^2 HopSizei (3.13)Hop Sizeavg n
where n is the number of anchor nodes and HopSizei is the Hop Size of ith anchor 

node.
After this, unknown nodes will calculate the distances to each anchor node as 

follows.

(3.14)di = Hops x Hop Sizeavg

In step 3 of the algorithm, 2D hyperbolic localization estimation is used instead 

of triangulation.
It is assumed that (xu,yu) are the location of unknown node a and (xi.yi) are 

the known location of the ith anchor node. dui is the distance between them.
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Method
In [19], steps 2 and 3 of the basic DV-Hop algorithm have been changed. In step 

2, all the anchors will broadcast its Hop Size in the format {ID. HopSizet}. Each 

unknown node keeps the Hop Size information of each anchor while discarding 

the duplicate packets. Then each unknown node calculate its Average Hop Size 
as follows.

^ HopSizei (3.13)HopSizeavg =

where n is the number of anchor nodes and HopSizet is the Hop Size of ith anchor 
node.
After this, unknown nodes will calculate the distances to each anchor node as 
follows.

n

di = Hops x HopSize

In step 3 of the algorithm, 2D hyperbolic localization estimation is used instead 

of triangulation.
It is assumed that (xu,yu) are the location of unknown node a and (Xi.yi) are 

the known location of the ith anchor node. dul is the distance between them.

(3.14)avg
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%i) {jju

xi + Vi - 2xuXi - 2yu'tji + xl + yl = <4 

dui E/i 2xuX{ 2VuVi "f- K

Vi? = dl (3.15)

Ei = Xi+ andK = x2u + y2u 

Zc = [xu,yu, K]t

where;

let;

- E,-2xx -2 yi 1
21/2 1 , h

d?u 2— 2X2 £2
Gc = C

2xn 2yn 1

GCZC — /zc 

Zc= {GTcGc)~lGTcfr 

xu = Zc( 1) and = Zc(2)

3.11.2 A New Improved DV-Hop Localization Algorithm (DV-Hop 
Marker)

This algorithm is based on the work done in [35]. We refer to this algorithm as 

"DV-Hop Marker".

Method
In [35], an additional phase has been added after the step 3 of basic DV-Hop 

algorithm. Analysis of the step 2 of the DV-Hop algorithm reveals that, for the 

unknown nodes from a certain small area always get the same hop-distance value 

and similar Hop Count. Hence they tend to have the similar location error. The 

additional phase is added based on this notion.

In this additional phase, some anchor nodes are selected as regulated nodes which 

either placed manually or randomly. Instead of using these regulated nodes 

as conventional anchors, they are considered as unknown nodes to be located.
are

Let (xuyi) be the calculated coordinate and (aVf,lfri) be the actual coordinate of 
the regulated node i. Then the error vector Ri can be found as follows.
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Xi - Xri (3.16)Ri =
Vi Vri

Then the regulated node broadcasts the packet {HopSize. Ri} to neighbors. 
Each unknown node will compare the regulated node’s Hop Size with its Hop Size 

received in step 2 of the basic DV-Hop localization. If both the Hop Size values 

equal, the unknown node will change the coordinates as follows.are

{p'u3 Vu) (*£m? Vm) Ri (3-17)

where (xm, ym) is the former location of unknown node m. If Hop Size values are 

not equal, the packet can be discard without modifying the coordinates.

3.11.3 A Weighted DV-Hop Localization Scheme for Wireless Sensor 
Networks (DV-Hop Weighted)

This algorithm is based on the work done in [20]. We refer to this algorithm as 

"DV-Hop Weighted".

Method
In [20], a weight has been given for each anchor node to improve the accuracy 

of the basic DV-Hop algorithm. The idea behind giving a weight for each an­
chor is to represent the impact of each anchor, in localizing the unknown nodes. 
The weight of each anchor node is a production of hop size weight and distance 

weight. Hop Size weight reflects the accuracy of Hop Size of the anchor and Dis­
tance weight reflects the distance between the anchor and the unknown node. 
The proposed algorithm is divided into three phases.

• Hop Count Computation
This phase is very similar to the step 1 of DV-Hop algorithm, where each un­
known node find the minimum Hop Count to each anchor node.

• Hop Size and Weight Computation 

This phase has been divided into three steps.
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Step 1:

= \fixi - xi)2 + fa - Vj)2HopSizeij (3.18)
hij

S j ± iHopSizejjHopSizei =
N- 1

Where (x*,?/*) and (Xj.xjj) are coordinates of anchor nodes i and j. is the 

Hop Count between them. N is the number of anchor nodes. HopSizei is the 

Hop Size of anchor node i. Then, anchor node i calculates the Hop Size Weight 
of anchor node j.

(HopSizeij — HopSizei)2
Wdij = 1 - (3.19)r2

if Wdij < 0 -> Wdi:j = 0

where r is the radio range of the sensor node.
Finally each anchor node broadcasts the {HopSizei, Wd^} to all the nodes.

Step 2:
Unknown node i calculates the Hop Size and the Distance Weight Whj of anchor 

j relative to node i.

]Cfc=1 HopSizek (3.20)Hop Size =
N

1
Whj =

hij

Step 3:
Unknown node i calculates the distance to the anchor node j and weight of anchor 

node j as follows.

(3.21)dij = x HopSize

EL wdjkWij = Whj x N

• Location Estimation
Unknown nodes will calculate their locations using weighted least squares method.
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H wi (\J (xi ~ xif + (Vi ~ Vi)2
i= 1

f{x,y) = min - dt? (3.22)

where Wi is the weight of the anchor node i.

3.11.4 Improved DV-Hop Node Localization Algorithm in Wireless 
Sensor Networks (DV-Hop Improved)

This algorithm is based on the work done in [26]. We refer to this algorithm as 
"DV-Hop Improved".

Method
The algorithm in [26] has been divided in to four steps. In summary. (1) some 

anchor nodes were fixed at the border land of the monitoring regions. (2) The 

Hop Size calculation was modified, and the average one-hop distance used by 

each unknown node for estimating its location was modified. (3) The unknown 

nodes’ positions were obtained by the 2D hyperbolic location algorithm. (4)Par­
ticle swarm optimization algorithm was used to correct the estimated position.

Step 1: Deploy Anchor Nodes
Some of the anchor nodes were fixed at the boarder of the monitoring area and 

rest were distributed randomly trough out the field. This avoided the concentra­
tion of anchors in an area and hence producing larger errors.

Step 2: Calculation of the Average Hop Distance of Unknown Nodes 

The average hop distance of every anchor node HopSizej was calculated as fol­
lows.

2 (h°Pij dij)
Ejp hoph

where hopij is the hop count between the anchor nodes i and j, dtj is the straight- 

line distance between the anchor nodes i and j.

(3.23)i ^ jHopSizei =

Then, average one-hop distance of unknown nodes HopSizeu was modified 

through weighting the N received average one-hop distances from the anchor 

nodes by the following formula.

2 fz
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HopSizeu = XiHopSizel (3.24)
i= 1

hopi
Xi —

ELi h°vk

where hopi is the hop segment number between the unknown node u and the 

anchor node i in its routing table and n is the number of all anchor nodes.

Step 3: Position Determination of Unknown Nodes 

2-D Hyperbolic location algorithm was used instead of the traditional trilateral 
or the multilateral position method to estimate the position of unknown nodes.

Let (xz, yi) be the coordinates of anchor node i and (xu. yu) be the coordinates 

of unknown node u.
The estimated distance diu between them is;

4 = (Xi ~ Xn)2 + (Vi - 11nf 

If Ai = x\ + Vi and Bi = x\ + y\, then;

(3.25)

dju A{ — ‘IXiXu 2ViVu ~r Bu (3.26)

This can be written in matrix form as;

(3.27)GZ = h

where

—2:rl —2yi 1 

—2x2 —2y2 1
Z — [xu, yu, Bu] G (3.2S)

—2xn —2yn 1

dfu - 

d'L ~ -42
h =

d\u -

56



Z can be obtained by using the least mean square estimation method:

Z = (GTG)~1GTh (3.29)

Then, coordinates of unknown node u are;

xu = Z{ 1) yu = Z(2)

Step 4- Particle Swarm Optimization 

Each particle has an objective function determined by the fitness value, and it 
also has a rate determined by the distance and direction of particle search. Each 

particle can update its velocity and position by;

(3.30)

vk+1 = cuvk + C\rand\{pbestuk — Xk) 

JrC2rand\(gbestuk — Xk)

Xku+l = Xku +

(3.31)

where vk is the velocity vector, Xk is the current position vector of the particle.pbestk 

is the individual extreme of the particle u by k — cycles, and gbestk is the global 
extreme of all particles by k — cycles. In the typical PSO implementation,cl and 

c2 are the acceleration factors and randk and rand% are both random of [0,1]. k 

is the current number of iterations.
The inertia weight uj\

O^niax 0)min (3.32)x kUJ = COmax itermax

and Wmin are the initial inertia weight and the termination inertia 

is the maximum number of iterations and k is the
where u
weight respectively, iter1 
current number of iterations.

max

nax

The fitness is designed as;

fitness(Xu) = ^cvf(d< - \XU - Af|) (3.33)
i-1

where Aj is the position of the anchor node and a, is inversely proportional to
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the hop count between the unknown node u and the anchor node i.

Iteratwe Algorithm for Locating Nodes in WSN based on Mod- 
ifymg Average Hopping Distances (DV-Hop Iterative)

This algorithm is based on the work done in [63]. We refer to this algorithm as 
"DV-Hop Iterative".

3.11.5

Work reported in [26] is mainly based on the work carried out in this paper. 
The paper is originally published in Chinese and hence the method of this algo­
rithm is not reported here. For simulation and comparison purposes we use the 

data set provided in [26] relative to [63].

3.12 Comparison through Simulations 

3.12.1 Simulation Environment

To evaluate the performance of the improved algorithm, Matlab was used. In sim­
ulation environment both anchor and unknown nodes are distributed randomly 

according to a uniform pdf as show in Figure 3.1.

Number of anchors (n), total number of sensor nodes (N) and radio range(R) 

of the nodes are varied in order to study the performance of the algorithm. Local­
ization error and localization error variance are used to evaluate the accuracy and 

the stability of the network. All the simulation results are averaged over 100 runs.

Matlab simulations are carried out to first examine the performance of the 

improved algorithms compared to the original DV-Hop. A scenario of 200 nodes, 
each having a radio range of 22m in a lOOmxlOOra area is used. Then, the al­
gorithms are studied for their performances by varying one at a time, the anchor 

ratio, the total number of nodes and the radio range of the nodes as summarized 

in Table 3.3. The localization error and the error variance are compared among 

them.

Figure 3.24, 3.25 and 3.26 show the comparison of performances of the i 
proved DV-Hop algorithms.

lin-

Time Ration in 3.34 is a indicator how fast the localization of the nodes hap­
pens in a given network. Figure 3.27 shows the comparison of Time Ratio with
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Table 3.3: Simulation Instances

Figure Total Number 
of Nodes

Anchor
Range(m)

Anchor 
Ratio (%)No

3.24 200 variable 5-40 22
3.25 variable 100-400 2210
3.26 200 variable 15-4010

60

—«— DV-Hop 
•— DV-Hop Iterative 

—■— DV-Hop Improved 
—♦— DV-Hop Average 
—A— DV-Hop Marker 
—►—DV-Hop Weighted
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Figure 3.24: (a)Error percentage with different number of anchors (b)Error variance with different number of 
anchors (N—200,R—22m)
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Figure 3.25: (a)Error percentage with different total number of nodes (b)Error variance with different total 
number of nodes (AR—10%,R—22m)

the varying number of anchors for different algorithms.

Localization! iTtieGivenAlgorithm (3.34)Time Ratio = LocalizationTime ov-Hop

3.12.2 Discussion

A summary of the performance of the compared algorithms is show n in the Table

3.4.
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Figure 3.27: Time Ratio with different number of anchors

According to the table localization accuracy of DV-Hop Improved [26] is far 

better than the rest of the algorithms compared. On the other hand its localiza­
tion error variance is also lower than the rest of the algorithms guaranteeing a 

stable performance for different sensor node distributions. In another note, DV- 
Hop Improved [26] does not need any additional distribution of packets compared 

to the DV-Hop algorithm ensuring the same communication cost. However, DV- 
Hop Improved [26] is around 10% slower than the DV-Hop algorithm due to the 

usage of the particle swarm optimization (PSO) algorithm and 2D Hyperbolic 

function in the process of localization.

DV-Hop Iterative [63] also characterizes the same behavior as the DV-Hop
error is higher than that of DV-Hop Im-Improved [26], though its localization 

proved [26|.
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Table 3.4: Performance Comparison of selected algorithms relative to the DV-Hop algorithm

Algorithm Average Localization 
Error Improvement

Com.
Cost

Time
Impro­
vement

Average Localization 
Error Variance
Improvement

with with
nodes

withwith
range

with •with
nodes

with
rangean- an-an-

chors
Figure
3.24(a)

chors
Figure
3.27

chors
Figure
3.24(b)

Figure
3.25(a)

Figure
3.26(a)

Figure
3.26(b)

Figure
3.25(b)

DV-Hop
Aver-

-1% -1% -10%-1% -1% -1%-1% lower

age [19]
DV-Hop
Marker

3% 3% -1% 5%1.5% higher0 0

[35]
DV-Hop
Weighted

4% 4% -4% 15%2% -2% -3% similar

[20]
6%DV-Hop

Itera-
5% 3% 18%4% 4% 2% similar

tive [63]
13% 13% 8% 7% 6% 3% 20% similarDV-Hop

Im­
proved [26]

Localization error of the DV-Hop Weighted [20] is around 4% lower than 

that of the basic DV-Hop algorithm, but higher than that of both the DV-Hop 

Improved [26] and DV-Hop Iterative [63]. The most noticeable fact is that the lo­
calization error variance of DV-Hop Weighted [20] is greater than that of the 

basic DV-Hop algorithm. That means that the performance of the DV-Hop 

Weighted |20| is less consistent with different sensor node distributions, com­
pared with basic DV-Hop algorithm. Therefore localization accuracy of the DV- 
Hop Weighted [20] can be more affected by the way of node distribution. Due 

to the weighting factor calculation process, computational complexity of the DV- 
Hop Weighted [20] increases compared to the basic DV-Hop algorithm. However 
DV-Hop Weighted [20] does not require any additional transmission of packets so 

that the communication cost, remains same as the DV-Hop algorithm.

Localization error of the DV-Hop Marker [35] is around 3% lower than that 
of the basic DV-Hop algorithm, but. greater than that of DV-Hop Improved [26], 
DV-Hop Iterative [63] and DV-Hop Weighted [20], Localization error variance of

61



the DV-Hop Marker [35] is almost similar as the DV-Hop algorithm. Due to the 

re-ti ansmission of the Correction Factor to the network, DV-Hop Marker’s [35] 
communication cost increases compared to the DV-Hop algorithm. However the 

network settling time increases only by around 5% compared to the DV-Hop al­
gorithm. This Time for localization can be heavily dependent of the total number 

of nodes in the network, since re-transmission of the Correction Factor for a very* 

large number of nodes may slow down the algorithm.

Localization error and error variance of the DV-Hop Average [19] is almost 
similar (if not a little high), compared with the DV-Hop algorithm. Most impor­
tant fact about DV-Hop Average [19] is that its computational cost is lower than 

that of DV-Hop algorithm. DV-Hop Average [19] uses a common Hop Size for the 

whole network, so it does not need to compute different Hop Sizes for different 
nodes which results in a reduction of computational complexity. On the other 

hand, due to the usage of a common Hop Size for the entire network, DV-Hop 

Average [19] only requires to transmit the Hop Size once in the whole process of 
localization. Therefore communication cost of the DV-Hop Average [19] is lower 
than that of the DV-Hop algorithm.
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Chapter 4

localizationaches for improved dv-hop

Localization is a significant consideration in a Wireless Sensor Network (WSN). 
as it is essential to correlate sensor information with the geographic location it 
originates from. The DV-Hop algorithm, being a range-free, distributed algo­
rithm, is an attractive option in this regard, due to its simplicity as discussed in 

Chapter 3. However it suffers from poor accuracy. In this Chapter, we present 
three algorithms to improve the localization accuracy of the DV-Hop algorithm. 
We examine the performance of the proposed algorithms through simulations in 

environments with varying node numbers, anchor ratios and radio range. The 

results show that the proposed algorithms have improved performance in local­
ization accuracy and stability compared to the original DV-Hop algorithm.

4.1 Proposed Algorithm 1

Improved DV-Hop Algorithm Through Anchor Position Re-estimation

4.1.1 Overview

Examination of the DV-Hop algorithm indicates that the source of inaccuracy 

comes from the errors in the computation of distances dij used in the multilat- 

eration step. This error is caused in the Hop Size computation. The basic idea 

behind our approach is to use the errors in the estimation of known anchor lo­
cations using the DV-Hop algorithm to modify the Hop Size to reduce these errors.

The proposed algorithm can be divided in to the following four steps.

Step 1: Hop Size and Hop Count of the anchor nodes are found using Step 

1 and Step 2 of the DV-Hop algorithm.

Step 2: Known positions of the anchor nodes are recalculated using Step 3
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of the DV-Hop algorithm.

Step 3. Step 2 is iterated by modifying the Hop Size to minimize the aver­
age of anchor position errors. Through this, the optimum Hop Size Correction is 
obtained.

Step 4: Locations of unknown nodes are estimated with Step 3 of the DV-Hop 

algorithm using the modified Hop Size after applying the Hop Size Correction.

The algorithm is studied with a random uniformly distributed sensor bed as 

shown in Figure ??. Figure 4.1 summarize the proposed algorithm.

Step 1: Find Hop Size and Hop Count of the anchor nodes 
using Step 1 and Step 2 of the DV-Hop algorithm

Step 2: Recalculate known positions of the anchor nodes 
using Step 3 of the DV-Hop algorithm

Step 3: Iterate Step 2 by modifying the Hop Size to minimize 
the average of anchor position error. Obtain the Optimum 

Hop Size Correction.

Step 4: Apply the Hop Size Correction to the anchor nodes.

Step 5: Estimating the locations of unknown nodes with 
Step 3 of the DV-Hop algorithm using the modified Hop Size

Figure 4.1: Algorithm 1

Recalculating the Anchor Positions (Step 2 of the Proposed 
Algorithm)

First the Hop Size of each anchor node is calculated by running the first 
steps of the basic DV-Hop algorithm throughout the network. Then, each anchor 

node transmits its actual location, Hop Size and the Hop Count information to a 

central location. At the central location it simulates the distribution of anchors 

and the position of each anchor node is estimated using the remaining

4.1.2

two

anchor
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nodes using the basic DV-Hop algorithm.

Let (Xi,iji) be the estimated location of anchor node i to be recalculated as an 

unknown node and (xj,yj) be the known location of anchor node j. is the 

distance between (£*£) and (xj,yj). Then;

(xi — X\)2 -f ('tji — yi)2 —

{ii - x2)2 + {Hi - y2)2 = <%2

Vi-1)2 — d\i_ i) 

[xi — xi+i)2 + (yi — yi+1)2 =

(Xi - Xi-i)2 + (iji

32(x{ T (iji yn—\) d (4.1)i(n—1)

n is the number of anchors in the network.

Equation (4.1) is an adaptation of (2.15) considering the ith anchor node as an 

unknown node. In (4.1), we use the Average Hop Size of the network instead of 

different hop sizes for each anchor when estimating the distances dik.

n—1

Hop Size-i
i= 1 (4.2)Average Hop Size(AHS) = n — 1

where Hop Size{ is the Hop Size of ith anchor and n is the number of anchors in 

the network.

Coordinates of the anchor node i can be recalculated using the follow ing ma-
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trix operation according to (2.15)

xi ~ Xn-l 

%2 %n—1

y 1 - Vn-l 

y2 - Vn-1

>1 = -2 x (4.3)xi-l - Xn-1 

xi+1 %n— 1

2/i-l “ 2/n-l

Vn—1

Xn—2 Xn— 1 Vn—2 Vn—l

according to (2.16);

4 - 4 

4 — 4
- 4 + 4-i
- 4 + 4-i

- 4 + 4-i
- 4 + 4-i

i(n-l)

i(n-l)5 = (4.4)

cP -dl — + 4-i - 4-2 + 4i(rc—2) i(n-l) n—2 n —1 _

from (2.17);
£; = (ata)-iatb (4.5)P =
Vi

The localization error of anchor i is calculated as follows.

eai = 4(xi - £i)2 + (j/i - j/i)2 (4.6)

The average anchor position errors is given by,

1=1 (4.7)&a,avg n

4.1.3 Iterative Hop Size Correction (Step 3 of the Proposed Algo­
rithm)

The estimation error changes with the Average Hop Size of the network. If AAHS 

is the Hop Size Correction to the initial Average Hop Size given by (4.2), Figure 

4.4 shows the variation of ca 

using the line search algorithm.

The optimum Hop Size Correction is computed

obtained as above is nowThe optimum Hop Size Correction value AA//Soptimum
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used to modify the Hop Sizes of each anchor node and unknown node as follows,

Hop Sizeii0ptirnum = Hop Size{ + AAHS^num (4-8)

dij Hop Siz&i optimum x Hop Countij

where Hop Size.L is the Hop Size calculated in Step 1 of the proposed algorithm. 
Proposed Algorithm 1 includes centralized computations, and therefore, removes 

of the flexibility of the original DV-Hop algorithm. Therefore we propose 

the second algorithm described in the next Section which does not have any 

centralized computations.

(4.9)

some

4.2 Proposed Algorithm 2

4.2.1 Overview

This algorithm uses the known distance between the anchors to improve the Hop 

Size of each anchor node. The proposed algorithm can be divided in to the fol­
lowing four steps.

Step 1: Hop Size and Hop Count of the anchor nodes are found using Step 

1 and Step 2 of the DV-Hop algorithm.

Step 2: Known distances among the anchors are recalculated using estimated 

Hop Sizes and Hop Counts.

Step 3: Step 2 is iterated by modifying the Hop Size to minimize the difference 

between the actual distance and the estimated distance among anchors. Through 

this, the optimum Hop Size is obtained.

Step 4: Locations of unknown nodes are estimated with Step 3 of the DV-Hop 

algorithm using the modified Hop Size.

The algorithm is illustrated in Figure 4.2. This algorithm maintains the dis­
tributed nature of the original DV-Hop algoiithm.
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Step 1: Find Hop Size and Hop Count of the anchor nodes 
using Step 1 and Step 2 of the DV-Hop algorithm

Step 2: Modify the Hop Size to minimize the difference 
between the actual distance and the estimated distance 

among anchors. Iterate this step until obtaining the 
Optimum Hop Size.

Step 3: Estimate the locations of unknown nodes with Step 
3 of the DV-Hop algorithm using the modified Hop Size

Figure 4.2: Algorithm 2

4.2.2 Recalculating the Distance between the Anchors

First the Hop Size of each anchor node is calculated through the first two steps of 

the DV-Hop algorithm throughout the network. Then the actual and estimated 

distance between anchors are calculated as follows.

Distance between anchor node i and j;

Dij = {Xi - Xj)2 + {yi - yj)'1 (4.10)

Estimated Distance between anchor node i and j\

(4.11)= HopSizei x hopij

Difference;
Ay = | - Dij |

N
Err or i = Ay

(4.12)

(4.13)
j=i

Optimum Hop Size of ith anchor, HopSizeUoptimum is found by reducing the 

Err or i using the Line Search Algorithm. This optimum Hop Size is used by 

unknown nodes to find their locations.
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4.3 Simulation Results and Discussion 

4.3.1 Simulation Environment

The performance of the two algorithms described above are evaluated using 

Matlab simulation environment where both anchor and unknown nodes are dis­
tributed randomly according to a uniform pdf as shown in Figure 3.1.

All the simulation results presented 

sor bed configurations.
averages obtained over 100 different sen-are

Figure 4.3shows the actual and estimated anchor positions obtained at Step 2 

of our Algorithms. The recalculated anchor positions show significant deviation 

form the actual positions.

Figure 4.4 shows the variation of the average anchor position error with the
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Figure 4.3: Actual and Estimated locations of anchors

Hop Size Correction. An optimum value for the Hop Size Correction is clearly 

observed in Figure 4.4.
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4.4 Performance Evaluation

Simulations arc carried out to first examine the performance of the proposed
algorithm compared to the original DV-Hop. 
having a ladio range of 22m in a 100m x 100m area is used. The algorithm 

is studied for its performance by varying one at a time, the anchor ratio, the 

total number of nodes and the radio range of the nodes as summarized in Table 

5.1. The localization error and the error variance are compared with the original

A scenario of 200 nodes, each

DV-Hop algorithm [9] and two other algorithms DV-Hop Weighted [20], DV-Hop 

Marker [35]. Finally, the new algorithms are compared for their communications 

and computational costs with the same prior studies.

Table 4.1: Simulation Instances

Figure Total Number 
of Nodes

Anchor 
Range (m)

Anchor
No Ratio (%)

variable 5-40 224.5 200
variable 100-4004.6 20 22

variable 15-404.7 200 20

4.4.1 With variable number of Anchor Nodes

Percentage localization error and percentage localization error variance are shown 

with different number of anchor nodes while keeping the total number of nodes 

at 200 in Figure 4.5(a) and (b) respectively. The radio range of a sensor node is 

set to 22m.

It is evident that both the proposed algorithms have better localization ac-
compared to the basic DV-Hop algorithm [9] as well as the previouslycuracy

published improved algorithms in [20] and [35]. The localization error of Algo­
rithm 1 is approximately 11%, 9% and 7% lower than that of [9], [35] and [20] 
respectively. The localization error of Algorithm 2 is approximately 9%, 7% and 

5% lower than the same respective comparisons. The localization error of Algo­
rithm 1 is approximately 2% lower than that of Algorithm 2.

variance of both the proposed algorithms also show aThe localization error 
clear improvement. The improvement obtained beyond 15 anchor nodes is ob- 

be insignificant. This corresponds to an Anchor Ratio (AR) of 7.5%.served to
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4.4.2 With variable Total number of Nodes

Percentage localization error and percentage localization error variance are shown 

with different total number of nodes while keeping the number of anchor nodes 

at 20 (10% AR) in Figure 4.6(a) and (b). The radio range of a sensor node is set 
to 22m.

It is evident that both the proposed algorithms have improved localization 

accuracy compared to [9], [20] and [35]. Localization error of the Algorithm 1 

is approximately 14%, 12% and 10% lower than that of [9], [35] and [20] respec­
tively. The localization error of Algorithm 2 is approximately 8%, 5% and 4% 

lower than the same respective comparisons. The localization error of Algorithm 

1 is approximately 8% lower than that of Algorithm 2.

Localization error variance is also clearly lower in both the proposed algo­
rithms in comparison with [9], [20] and [35].

4.4.3 With variable Radio Range

Percentage localization error and percentage localization error variance are shown 

with different total radio ranges while keeping the total number nodes at 200 in 

Figure 4.7(a) and (b). Number of anchor nodes is 20 (10% AR).

It is evident that both the proposed algorithms have improved localization 

accuracy compared to [9], [20] and [35], Localization error of the Algorithm 1
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4.4.2 With variable Total number of Nodes

Percentage localization error and percentage localization error variance are shown 

with different total number of nodes while keeping the number of anchor nodes 

at 20 (10% AR) in Figure 4.6(a) and (b). The radio range of a sensor node is set 
to 22m.

It is evident that both the proposed algorithms have improved localization 

accuracy compared to [9], [20] and [35]. Localization error of the Algorithm 1 
is approximately 14%, 12% and 10% lower than that of [9], [35] and [20] respec­
tively. The localization error of Algorithm 2 is approximately 8%, 5% and 4% 

lower than the same respective comparisons. The localization error of Algorithm 

1 is approximately 8% lower than that of Algorithm 2.

Localization error variance is also clearly lower in both the proposed algo­
rithms in comparison with [9], [20] and [35].

4.4.3 With variable Radio Range

Percentage localization error and percentage localization error variance are shown 

with different total radio ranges while keeping the total number nodes at 200 in 

Figure 4.7(a) and (b). Number of anchor nodes is 20 (10% AR).

It is evident that both the proposed algorithms have improved localization 

accuracy compared to [9], [20] and [35]. Localization error of the Algorithm 1
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is approximately 14%, 13% and 12% lower than that of [9], [35] and [20] respec­
tively. The localization error of Algorithm 2 is approximately 8%, 7% and 6% 

lower than the same respective comparisons. The localization error of Algorithm 

1 is approximately 6% lower than that of Algorithm 2.

Localization error variance is also clearly lower in both the proposed algo­
rithms in comparison with [9], [20] and [35].

Radio Range (m)Radio Range (m)

(b)(a)

Figure 4.7: (a)Error percentage with different radio range (b)Error variance with different radio range
(N°-200,A—20)

4.4.4 Communication and Computational Cost

Communication cost of the algorithm is determined by the number of packets 

exchanged inside the network in the process of localization. In both the proposed 

algorithms, an optimized Hop Size is found using an iterative method. Therefore
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the number of packets exchanged throughout the network increases. As a result, 
the communication cost of the proposed algorithms is higher than that of the 

basic DV-Hop algorithm. However since Algorithm 2 carries out local processing 

in the anchors instead of a central location the communication cost is lower 
pared to Algorithm 1.

com-

Computational cost of the algorithm can be determined as the computational 
time taken in the process of the localization. Computational cost is studied using 
the time ratio defined in 4.14.

LocalizatlOnT LTTIC Proposed AlgorithmTim,e Ratio = (4.14)
Localization>T ^nClCjOY—Hop Algorithm

Due to the iterations, the proposed algorithms have higher computational cost 
than the DV-Hop algorithm as illustrated in Figure 4.8. While the computational 
cost of Algorithm 1 increases drastically with increasing anchor ratio, the same of 
Algorithm 2 is significantly lower in comparison. Comparing with Figures 4.5, 4.6 

and 4.7, it is seen that the lower computational cost of Algorithm 2 is obtained 

with a sacrifice in performance. The increase in computational cost of Algorithm 

2 in comparison to [9], [35] and [20] is approximately 4%.

35
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—■— Algorithm - 1 
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30
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a:
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25 30 35 402015105

Number ot Anchors

Figure 4.8: Time Ratio with different number of anchors

4.4.5 Conclusion

The two algorithms proposed in this Chapter are based on using anchor position 

re-estimation in order to obtain a better estimate of the Hop Size. Simulation 

results show that both the proposed algorithms provide improvements over the 

DV-Hop algorithm [9] and the improved versions presented in [20] and [35]. A
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peifoimance comparison is provided in summary form in Table 4.2. Localization 

eiroi vaiiance also is lower in both the proposed algorithms, and thus they ensure 
more steady performance.

Table 4.2: Performance Comparison of Algorithms

Algorithm Localization error as a percentage of R
Case 1 Case 4Case 2 

N=200 
n=30 

R=22m

Case 3 
N=300 
n=20 

R=22m

N=200
n=20

R-22m

N=200
n-20

R=40m
DV-Hop [9] 34.1166 32.8638 32.3024 29.5040
DV-Hop Marker [35]
DV-Hop Weighted [20]
Algorithm 1

32.8907 30.8675 30.5428 27.8509
31.5418 30.1692 30.1867 28.6347
24.5055
27.5249

16.808723.8068 20.9430
Algorithm 2 22.578625.0581 26.4259

The optimum Hop Size computation requires an iterative procedure. Thus, 
both algorithms need more computational power and time than the DV-Hop 

algorithms used for comparison. Also, the computational cost of Algorithm 1 

increases with the number of anchor nodes.

Algorithm 1 introduces a centralized processing component into the DV-Hop 

algorithm, while Algorithm 2 retains the original distributed nature. Thus, Algo­
rithm 1 incurs a higher communications cost than Algorithm 2. The increase in 

computational cost of Algorithm 2 relative to [9], [20] and [35] is approximately 

4%.

4.5 Proposed Algorithm 3

Improved DV-Hop Algorithm for Grid based sensor networks 

4.5.1 Overview

In this Section we propose a DV-Hop based localization scheme that can be used 

for localizing grid based sensor networks. We assume that the sensoi netwoik 

is deployed in a controlled manner, where the sensoi s are fixed randomly on a 

regular grid as shown in Figure 4.9. Furthermore we assume that grid distance 

(D) is known and radio range (./?) of each sensor node is D<R< 2D.
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figure 4.9: Sensors deployed on a grid in a random manner

Since all the nodes are placed on grid points, the distance between an anchor 

and an unknown node should be a known multiple of the grid distance D. As 
shown in Figure 4.11,

of {l, V~2,2, >/5, Vs, 3, \/l0, VlS, VlS, 4, Vl7,...} x Ddij = one

where dij is the distance between anchor node i and unknown node j. We 

use this knowledge about d^ to improve the performance of DV-Hop algorithm 

in grid based networks.

(4.15)

Estimated posit ic a
O Jrhroucfi Algorithm

ctiial position
\/

d'i„ •''v/ *i

i+ T
l Aii i\^ i/

Grid distance (D)

Figure 4.10: Grid based DV-Hop algorithm

The algorithm runs in three major steps as follows.

Step 1: Each anchor node broadcasts a packet throughout the network con-
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taining its location and Hop Count value initialized to 
node keeps the minimum Hop Count while discarding higher ones from a partic- 

ulai anchor node. Each receiving node will increase the Hop Count by one before 

passing the packet onwards. At the end of this process, each node in the network 

obtains the minimum Hop Count to every anchor node.

Each receivingone.

Step 2: Each anchor node estimates its Hop Size using the Hop Count val­
ues to the other anchors as in Step 2 of the basic DV-Hop algorithm in 2.14and 

broadcasts it to the network. Unknown nodes save the first value they receive, 
while transmitting this Hop Size to the neighbors. This mechanism results in 

most of the unknown nodes obtaining the Hop Size of the nearest anchor. At the 

end of this process, unknown nodes estimate the distance form each anchor as the 

product of Hop Size and the corresponding Hop Count. The resulted distance 

between an anchor and an unknown node will be rounded to the nearest value of 

4.15.

Step 3: Unknown nodes estimate their locations using either trilateration mul- 
tilateration or maximum likelihood estimation after they receive three or more 

distance information as in Step 3 of basic DV-Hop algorithm.

4.5.2 Simulation Results

The performance of the proposed algorithm described above are evaluated using 

Matlab simulation environment where both anchor and unknown nodes are dis­
tributed randomly according as shown in Figure 4.11. In each node distribution, 
anchor density remains a constant.

Performance of the proposed algorithm is compared with nearest grid point 
DV-Hop algorithm. Nearest grid point DV-Hop algorithm runs all the three steps 

of the basic DV-Hop algorithm and then the estimated position of the unknown 

node will be dragged to the nearest available gtid point.

Figure 4.12 shows the node distribution and the error variation of a grid based

WSN.
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4.5.3 Discussion

Through simulations it is very clear that the proposed algorithm can localize 

more nodes with zero localization error. Figure 4.13 shows the summary of the 

simulation results gathered for various grid based topologies.

In our WSN based application, if the controlled node distribution is possible 

grid and the grid distance is known, the proposed algorithm can be 

used to localize the unknown nodes of the network.
on a even

4.6 Localization in Emergency Environments

In this research, we tried to overcome challenges for localization mentioned in 

Section 1.4 in an emergency situation by improving, modifying the DV-Hop algo­
rithm. First we improve the accuracy of the DV-Hop algorithm while proposing 

three novel enhancements to the original DV-Hop algorithm. The effect of link 

failures node failures and radio range irregularity on DV-Hop localization accu-
1
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racy is studied. Now we propose a new DV-Hop based algorithm to locate newly 

introduced nodes to an existing sensor network.

4.7 Introduction of New Nodes to the Network

Introducing new sensor nodes to the existing network is a common requirement 
in WSN related applications. Especially nodes with unknown locations can be 

newly added randomly for additional information gathering during an emergency
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Figure 4.13: Performance of the proposed grid based DV-Hop algorithm in different node distributions

situation such as a fire. Therefore these newly added nodes should be localize 

as quickly as possible with best possible accuracy. In this Section we propose a
method to localize a newly introduced node with the help of DV-Hop algorithm.

4.7.1 Proposed Algorithm

First we assume that there is a sensor network which has been localized using 

the DV-Hop algorithm and our objective is to localize a newly added unknown 

node with minimum communication and computational cost. Since each un­
known node has already been localized earlier using the DV-Hop algorithm, each 

unknown node has a table with anchors’ locations and minimum number of hops 

to each anchor of the network. Table 4.3 shows this and we name it as Hop Count 
Table.

Table 4.3: Hop Count Table

HopsLocationAnchor
hiA\

(X*2, f/2) h-2A-2

(^' n i Vn ) hnAn

node is introduced to the network, first it sends a packet to its 

neighbors (one hop away) asking the Hop Count Table. Newly introduced node 

keeps the first received Hop Count Table while discarding others unless its from
that the Hop Count Table of the nearest

Once a new

anchor. This mechanism ensures 
neighbor will get to the newly added node. The newly added node will save the 

Hop Count Table while adding one to the hop count column. If an anchor is a

an
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Figure 4.13: Performance of the proposed grid based DV-Hop algorithm in different node distributions

situation such as a fire. Therefore these newly added nodes should be localize 

as quickly as possible with best possible accuracy. In this Section 

method to localize a newly introduced node with the help of DV-Hop algorithm.

4.7.1 Proposed Algorithm

First we assume that there is a sensor network which has been localized using 

the DV-Hop algorithm and our objective is to localize a newly added unknown 

node with minimum communication and computational cost. Since each un­
known node has already been localized earlier using the DV-Hop algorithm, each 

unknown node has a table with anchors’ locations and minimum number of hops 

to each anchor of the network. Table 4.3 show's this and we name it as Hop Count 
Table.

w'e propose a

Table 4.3: Hop Count Table

HopsLocationAnchor

(*2, yi)
hiA\
hoA<i

hnfan i IJn )

node is introduced to the network, first it sends a packet to its 

neighbors (one hop away) asking the Hop Count Table. Newly introduced node 

keeps the first received Hop Count Table while discarding others unless its iron, 
an anchor. This mechanism ensures that the Hop Count Table of the nearest 
neighbor will get to the newly added node. The newly added node wrll save the 

Hop Count Table while adding one to the hop conn, column. If an anchor . a

Once a new
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neighboring node to ' 
respective anchor will not be

the newly added 

! added
n°de then the hop count column of that 

one. Figure 4.14 illustrates this algorithm.

Anchor Locstion Hops
A (xi.yi)

(X2,y2)

hi
A2

h2

An (Xr,yn) hn

Na/v Node

Existing Nodes

Anchor Ak

Figure 4.14: Localizing a newly added node

Table 4.4 shows the saved Hop Count Table of the newly added node.

Table 4.4: Hop Count Table

Anchor Location Hops
(zi.i/i) 
(*2,2/2)

h\ -f* 1 
h2 + l

A\
A2

h*Ak

Vn) hn + 1An

Once the Hop Count Table is finalized, the newly added node runs the third 

step of the basic DV-Hop algorithm to estimate its location.

4.7.2 Simulation Results
Figure 4.15 shows a network with a newly introduced node, 
this newly introduced node is needed to be analyzed.

Localization error of
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When analyzing the results of the 4 lfi n •
of the newly introduced n ] ‘ 1 ls verY clear that the localization

existing network. On the other h ^ Wlth the localization error of the
node is very much cost effect; Pr°P°sed mechanism ^ localizing a new
vise over re-localizing the whole netwoT ^ C°mPUtati°nal and c°™ication 

4.8 Introducing a New Node in

In this Section we introduce a new node in an emergency situation where some 

of the existing nodes are destroyed due to a spreading fire. Through simulations 

we ana yze the performance of the proposed algorithm for localizing the newly 

introduced node in a node destroying environment.

error

5

an Emergency Situation

4.8.1 New Node outside the Fire

Figuie 4.17 shows a scenario with a fire outside the newly added node. Due to 

the fire several nodes have been destroyed.
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Figure 4.17: Localizing a new node in a

(b) After fire

node destroying environment (Nodes - 200, Radio Range - 22m)

4.8.2 New Node inside the Fire

Figure 4.18 shows a scenario of localizing
several nodes have been destroyed.

node which is inside a fire. Duea new

to the fire

variation in these two scenarios.
Table 4.5 shows the localization error

node is outside the fire,Its it is clear that when the
affect the localization accuracy of the newly

new
According to the resu 

node destruction due to fire will not
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accuracy of a new node in a node destroying environment

es —

Table 4.5: Localization

Actual No fire Outside fire
Figure 4.17 Figure 4.18

(31.26, 26.03) (31.26, 26.03) (35.41.26.2Sf

Inside fire

Location (30,20)
Error %R 28.03 28.03 37.70

introduced node. When the newly introduced node is inside the fire region, it 
may affect the localization accuracy of the new node. This happens due to the 

destruction of nearest neighbors to the newly introduced node.

4.8.3 New Node inside a Spreading Fire

In this Section we analyze the localization accuracy of a newly introduced node 

which is inside a spreading fire. Figure 4.19 shows a scenario with a spreading 

fire until all the neighboring nodes of the newly introduced node are destroyed.

of a newly introduced nodeTable 4.6 shows the percentage localization 

according to the magnitude of a fire.

error

4.8.4 Discussion
discussed regarding a novel mechanism for localizing

, , , an existing network, with the help of DV-Hop algo-
a newly introduced node - ^ ;t ig very dear that the proposed
rithm. After analyzing the simu ^ ^ thfi same localization accu-

etwork. fTrttamore, . scenario of an emergency situation

In the above two sections we

algorithm can localize a newly

racy as the existing n
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Figure 4.18: Localizing a new node in a node destroying environment (Nodes — 200, Radio Range — 22m)

Table 4.5: Localization accuracy of a new node in a node destroying environment

Actual No fire Inside fireOutside fire
Figure 4.17 Figure 4.18

(30,20) (31.26, 26.03) (31.26, 26.03) (35.41.26.28)Location
Error %R 28.03 37.7028.03

introduced node. When the newly introduced node is inside the fire region, it 
may affect the localization accuracy of the new node. This happens due to the 

destruction of nearest neighbors to the newly introduced node.

4.8.3 New Node inside a Spreading Fire

In this Section we analyze the localization accuracy of a newly introduced node 

which is inside a spreading fire. Figure 4.19 shows a scenario with a spreading 

fire until all the neighboring nodes of the newly introduced node are destroyed.

Table 4.6 shows the percentage localization error of a newly introduced node 

according to the magnitude of a fire.

4.8.4 Discussion

In the above two sections we discussed regarding a novel mechanism foi localizing 

a newly introduced node to an existing network, with the help of DV-Hop algo­
rithm. After analyzing the simulation results, it is very clear that the proposed 

algorithm can localize a newly introduced node will the same localization accu- 

the existing network. Furthermore, a scenario of an emergency situationi’acy as

83



100 100* t.-~v norm
• Unknonwi ricnin 
A HowKgfc

•■"r-:—-

*■ '• • •

90 .JSO *~7o' Vjw ; 
U^voir 1 • .mto «*60

*1
I-.;.rer-

70 70

* . *eo to
6C-* . *SO so
sci. : V • ' . *40 40

•f. . : ‘.
■ •30 30

. ■ \ Kr • . - \ ] * i
: i

.. • 1
**‘20 20

J

4- • •10 10 :
°0 10 20 30 40 SO 60 70 80 SO 100

(a) Before fire : fire radius=10m

*• r
o :a» 60 70 jo so lac 20 30 *0 » so 70 » so 100

(b) After fire : fire radius=10m (c) Before fire : fire radius=20m100 00
• A/ienor Modes
• Urrt/wwn Hotel
4 Nl^ titer

n *. 'so r~r J
::••• ■

U''.w U«tl-
00

1 *

70 70

• . *
* . /.* •*60 4to

so • .» 
: *

sc!50 . * : * • . •
: * .*<0 40• 40-»<*» :* ••® \ • ’ :* •30 30 »x7

20 ?®l ® 9 20
20l • •' o <9 ’0 :<3'C© • *

°0 10 20 30 40 SO 60 70

(d) After fire : fire radius=20m

e © • •M SO 100
°0 10 so

(f) After fire : fire radius - 30m

«0 50 60 70 85 90 100

(e) Before fire : fire radius=30m

* .FT
' . Li

X 40 sc K 70 35 30

100 100
Anerty No3«
Ur.4r.0wn Mooes 
Mow MoCo

’00
eo so • .j : :. UnWIOWTl Hotel:

MowMoeo
X

60 80

f70 70

60 GO

SO 50• . »
40 a a

“f • *'*9 • ‘ ‘

® a ® »a • •

40

30 30

20 20:-
10 10

aa
°0 >0 20

(g) Before fire : fire radius=40m
30 40 50 60 70 80 SO 100 20 30 40 50 60 70 80 SO 100 ’0 20 »4O5O«70a0M'X

(h) After fire : fire radius=40m (i) Before fire : fire radius=50ra
100

Anew Kocca
90 • :u Uri-wwn Noo«

EO

70

60

50

40

30

20

10

10 20 30 40 50 60 70 80 90 100

(j) After fire : fire radius—50m

Figure 4.19: Localizing a new node inside a spreading fire (Nodes = 200, Anchors = 20, Radio Range = 22m, 
New node — (30,20))

Table 4.6: Localization accuracy of a new node in a spreading fire (New node at (30,20))

Error %REstimated LocationRadius of Fire (m)
(31.26,26.03)
(35.41,26.28) 
(35.41,26.28) 
(35.41,26.28) 

Unable to locate

28.0310
37.70
37.70
37.70

20
30
40
50

was simulated and localization accuracy of a newly introduced node was evalu-

84



*“f r^VT*"* f,r° SitU“i0n- h " 'h“ “ >— «. neighboring
node should be there wrth the newly introduced node localize that. If there's

neig ormg nodes for the newly added node, that node cannot be localized.

Though we have simulated the 

node, the same algorithm 

nodes simultaneously.

no

scenario of localizing a single newly added 
can be extended to localizing multiple newly added
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Chapter 5

TARGET TRACKING

5.1 Introduction

The objective of this Chapter is to present a novel tracking algorithm based on 

the DV-Hop algorithm. In the previous two Chapters we discussed in depth the 

DV-Hop localization algorithm and its improvements. In this Chapter we imple­
ment the target tracking functionality in an existing network which is already 

localized. Later in the Chapter propose a novel tracking algorithm which 

combines the DV-Hop algorithm with Kalman filtering. The DV-Hop algorithm 

is used for pre-localization of the target and measurement conversion. Then the

we

Kalman filter is used to recursively update the target state.

Before presenting the novel tracking algorithm we first implement an existing 

target tracking algorithm [61] by particle filtering in a binary sensor network. In 

a binary sensor network, the deployed sensors measure a signal of interest and if 
its level is above a predefined threshold, they report to the fusion center with a 

signal that identifies them; otherwise they are silent. Therefore, binary sensors do 

not need much internal processing. However this is a centralized algorithm. We 

use this algorithm as a reference to compare the performance with the proposed 

novel tracking algorithm. Finally we compare the performances of the algorithms 

using Matlab based simulations.

Target Tracking by Particle Filtering in Binary Sensor Networks5.2

Djuric et. al [61] present a particle filtering algorithm for tracking a single target 
using data from binary sensors. The sensors transmit signals that identify them
to a central unit if the target is in their neighborhood; otherwise they do not

a model for the target movement intransmit anything. The central unit 
the sensor field and estimates the target’s trajectory, velocity, and power using

introduce and implement this algorithm.

uses

the received data. In Section 5.2.1 we
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Simulation results show the performa

5.2.1 Network Description

In a binary sensor network, the deployed sensors measure a signal of interest and 

if its level is above a predefined threshold, they report to the fusion center with 

a signal that identifies them; otherwise they are silent.

of the implemented algorithm.nee

*6/ S6-0t} / S4—1 \/ *5/ S5-I \t3/s3=l
\

ti/ Sj-0 t2, S2-O Binary Sensor\ / Target Trajectory

/ Range of the binary 
sensor

Figure 5.1: A binary sensor with a moving target

\ /\

Figure 5.1 shows a binary sensor having a circular coverage. When the target 
is outside the range of the sensor, the received signal is below the set threshold, 
and the sensor does not transmit anything (instants ti, t2, t6). During the time 

when the target is inside the range of the sensor, the received signal is above 

the threshold, and the sensor transmits a "one" to the fusion center (instants t$, 
£4, £5). When at a given time the fusion center does not receive a signal from a 

particular sensor, this implies that the sensor transmits a "zero.".

The network consists of N binary sensors that may be deployed randomly, 
deterministically, or both. In all cases, we assume that the fusion center knows 

the locations of all the binary sensors and that their locations remain fixed for 
all time.

5.2.2 Mathematical Models

The standard model for target movement is described as follows.

(5.1)Xk = fak h Vk Vk]

where (xkryk) are the position of the target at time tk and (xk,yk) are the 

velocities of the target along the x and y directions at time tk respectively.
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Rom the nearly constant-velocity model [64]•

Xk+\ — FkXk + Gkuk (5.2)
where

1 A(fc 0 0
0 10 0 

o 0 1 Atk
0 0 0 1

Fk = (5.3)

r M. o 
2 u

A tk 0 
0 ^ 

0 A tk

Gk = (5.4)

where Atk = tk+i~tk is the sampling time, uk = [ux UyY is a white Gaussian 

noise with zero mean and covariance matrix Qu. ux and uy represent the effect 
of noise acceleration of the moving target along the x and y axes respectively.
Furthermore we assume that ux and uXJ are uncorrelated, i.e.,

< o 

0 uy J

The received power can be modeled for the nth sensor as follows.

Qu — (5.5)

(5.6)Un,k — 9n{Xk) + Vnjk
Ikn “ lk II

i5 25 . 
where

N

• N is the total number of sensors.

• g„(-) is a function that models the received signal power by the nth sensor.

independent from Uk and independent from noise• vn,k is a noise process 

samples of other sensors.

• rn is the position of the nth sensor.
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• Ik - [Xk Vk]T is the location of the target at time tk.

9 \\rn - lk||a denotes the Euclidean distance between

° ^ie em^ted power of the target measured at a reference distance do.

© a is an attenuation parameter that depends on the transmission medium 

and is considered to be known and the same for all sensors.

In the model, it is assumed that vntk ~ a2) where fiv = cr with a2
being the known power of the background measurement noise of one sample and 

> with L being the number of samples used to obtain the measured power.

t’ji and ^k’

The nih sensor measures the received power yn,k, processes it locally and trans­
mits a single binary digit to the fusion center according to the following rule.

1. The sensor compares the actual observed power level ynik with a threshold 

7. If the sensed value is below 7, it remains silent.

2. If the sensed value is greater than 7, the sensor transmits its identification 

code to the fusion center.

Therefore, the sensors in the network send signals to the fusion center only if 

the received power is greater than the sensor thresholds.

The received signal from the nth sensor at the fusion center is modeled as 

follows.

(5.7)Zn,k — ftn $n,k T €n,k

where

1 if Vn,k > 7 

0 if yn,k < 7

the observation noise, and /?„ is a known attenuation coefficient asso-

(5.8)

and 6ni/c is 

dated with the nth sensor.
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In this analysis we neglect the observation noise, i.e.

(5.9)zn,k — Sn,A:

The objective is to track the evolving state X0:k = (X0, Xx..... . Xk) using the
observations Zv.k = (zi where zijl:k represents the observations up,1 :k, •

to time tk of the ith sensor.

5.2.3 Tracking Algorithm

In this Section we describe the target tracking algorithm associated with [61].

Recall that according to the theory of particle filtering, we track the a posteri­
ori distribution of X$:k, p(Xo:k\Zi:k) by approximating it with a random 
Xk composed of particles xj:m) and weights wk 

we denote by Xk = w^}^=1

measure
. where m is an index, and which 

with M being the number of particles. At 
every time instant tk) the particle filter carries out the following operations [61]:

(m)

1. Selection of most promising particle streams

2. Particle propagation

3. Computation of particle weights

4. State estimation

Particle filter attempts to draw from an importance function which is as close 

as possible to the optimal one. To that end, the selection of most promising parti­
cles is carried out by sampling from a multinomial distribution where the number 

of possible outcomes is M and the probabilities of the respective outcomes 

w[m\m = 1,2....,M and
are

where is some parameter that characterizes Xk given A 

We have,

(5.10)-l

fc-r

P(zk\^i])=n*^"0) (5.11)
n=l
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For the factors p(znJc\^)

p(zn,k\^) =

we can write,

P(sn,k = 0|/x[m)) + P(snk = (5.12)

/ 9n{pj ~ HvP(sn,k = 1|^) = g (5.13)

P{*n,k = 0|M'm>) = 1 - Q ( 1- ffnG^) - F,
(5.14)

O'..

where Q(-) denotes the complementary function.

The initial set of particles = 1.2 ; M. are drawn from a prior dis­
tribution 7r(X0), and the weights of the particles are set to Suppose now that

(m)\M
<-ij ■

J m= 1
- *at time instant tk — 1, we have the random (m)measure Xfc-i

Then the steps of a particle filter recursion can be implemented as follows.
0:fc-l-

1) Selection of most promising particle streams:
For selection of most promising particles, the conditional mean of given 

is used as a characterizing parameter of every stream,(m)
k-1

E (xk\X^\)(m) _ (5.15)to
The conditional means are computed from,

(m)^ = FkX

This is followed by computation of the weights according to 5.10 and their 

malization. Finally, a set of indices {im} are drawn from the probability mass 

function (pmf) represented by the normalized weights.

(5.16)k-1

nor-

2) New particle generation:
The first two elements of the four-dimensional state Xk represent the location

of the target in a two-dimensional space, 
in this space. That implies that the generation of X'k 

two-dimensional random variables. The generation

and the components of the velocity
-(m) requires drawing only 

be carried out by first,can
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propagating the velocity components 

p{ikiyk\zk-i,ilk-\) and second,
step ahead using the joint distribution 

computing the locations according to

one

+X (*£r(m) __ Um) 
xk - ) (5.17)fc-1

(»«+*£•>)(m)
Vk (5.18)

3) Weight computation:
The newly generated particles are assigned weights according to

p (zk\xjj
Wkim) oc (5.19)

4) State estimation:

Once the weights are normalized, one can use Xk to compute estimates of the 

unknown states. The minimum mean square error (MMSE) estimate is obtained 

form,

M

m= 1
(5.20)

Simulation Results

In this Section we present Matlab based simulations that illustrate the perfor- 

of the above algorithm. We considered a scenario where the examined 

network consisted of = 121 sensors deployed in a monitoring field with dimen­

sions 100m x 100m.

5.2.4

mances

Simulation parameters;

• Attenuation parameter a = 2.5

• Reference power parameter to ip = 5000 at do — lm

• Radio range of the sensors is 22m

• Threshold 7 = 2.
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• The covariance matrix of the state 

the measurement noise

o Sampling interval Atk = l.s.

© Number of particles M = 1000

o The prioi foi the target s location and velocity was a Gaussian distribution 

with mean X0 = [0 0.01 0 0.01]r and covariance matrix E =diag{10,0.01,10.0.01

We experimented with two sensor networks, with deterministically and 

domly deployed sensors as shown in Figure 5.2. It can be seen that the algorithm 

track the target’s trajectory closely.

noise process, Qu =diag{0.05,0.01} and 
mean, //v = 1 variance, = 0.01.

ran-

100 100
r• Sensors

--------- True Path
■ Estimated Path

Sensors
j--------- True Path
!--------- Estimated Path

90 SO

80 SO ■ .
70 70

60 60 #
so; 50

40 40

30 30

20 20

10 10 ••
0 0

-10 0 10 20 30 40 50 60 70 80 90 100 -10 0 10 20 30 40 50 60 70 SO 90 100

(a) (b)

Figure 5.2: A realization of a target trajectory (Nodes — 121, Radio Range — 22in) (a)Deterministically deployed 
sensor network (b)Randomly deployed sensor network

In Figure 5.3, we display the root mean square errors (RMSEs) of the loca­
tion estimate of the target through the algorithm. The RMSEs in this experiment 

obtained by averaging 100 different realizations. Visual inspection of Figurewere
5.2 (a) and (b) show that accuracy of tracking is better in the deterministically 

network compared to the one with randomly deployed network.
various factors including on the num-

deployed
The difference in performance depends 
bcr of sensors in the field, their constellation, the actual trajectory of the target, 
the strength of the transmitted signal by the target and the sampling interval.

sensor
on

The RMSEs of the location coordinates and velocity components ol the target 

are shown in the Figure 5.4.
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Figure 5.3: RMSEs of the location estimates of the target (Nodes — 121, Radio Flange — 22m)

10 10
Sensors on a grid
Randomly deployed sensors

!---------Sensors cn a grid
j Randomly deployed sensors f9 9

8 8

7 7

X 6 >. 6
£ £
8 5 
i 4

w 5

3 4
3 -3

J2 2

Am
% 10 20 30 40 50 60 70 80 90 100

Time
10 20 30 40 50 60 70 80 SO 100

Time

(a) x Position (b) y Position
10 10

---------Sensors on a grid
Randomly deployed sensors

i------- Sensors on a grid .
------- Randomly deployed sensors j9 9

8 3

7 7

> 6
lu 5 
to

i 4

> ^ 
c
in 5 
U)

I 4

S

3 3

2 2

IVI 11 h
V

10 20 30 40 50 60 70 80 90 100
Time

0 10 20 30 40 50 60 70 80 90 100
Time
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Figure 5.4: RMSEs of location coordinates and velocity components (Nodes - 121, Radio Range - 22m)

(d) y Velocity in y direction

Figure 5.5 shows the performances of the algorithm expressed by the 

lative distribution functions (CDFs) of RMSEs. Again 100 different realizations 

were used in the experiment. Through figures it is evident that around 70^ of 

nodes have a RMSE less than 2.

cumu-

We further studied the impact of the total number of nodes, velocity of the
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Figure 5.5: CDF of RMSEs (Nodes =

6 7

121, Radio Range = 22m)

target and number of pai tides, on the accuracy of the tracking algorithm. Figure 

5.6 shows the result for 100 different realizations of a randomly deployed sensor

Number ol nodes

(a) Radio Range — 22m

Figure 5.6: (a)RMSE with different total number of nodes (b)RMSE with different number of particles

(b) Nodes = 200, Radio Range — 22m

It is dear that, as we expected, when the total number of nodes is increasing 

in the network, localisation accuracy of the tracking algorithm is improved. On 

the other hand, the velocity of the targe, has vet, little effect on the accuracy of 

the tracking algorithm. Hence for same network realisatron, movmg «ge«m 

different velocrties shows almost same RMSE. father, as we expected when 

number of particles of the particle filter increase/, 
tracking algorithm also improves.

localization accuracy of the

reference for performance comparison of the pro­
following Section. Though there is no direct

We use this algorithm as a 

posed novel tracking algorithm in the
!
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link between the concepts of this algorithm 

list down few similarities
and the proposed novel algorithm 

two as follows.
we

and differences of thecan

Similarities: Both algorithms use ran™o use range free sensors, same target motion
model and the same state update method.

Differences: Algorithm in 

in the network are known with
[61] assumes that locations of the existing 

zero error, where as in the novel algorithm those 
locations to the existing sensors have been found using the DV-Hop algorithm. 
Algorithm in [61] uses

where as the novel algorithm uses Kalman filter of the

sensors

Particle filtering for recursive update of the target state,
same.

We use this algorithm foi performance comparison in this research basically 

because of its similarity of the network layout. The network is a range free one 

with the same target motion model. Therefore we can compare the performances 

of this algorithm with the novel algorithm though there are a few differences in 

the two algorithms.

5.3 A Novel Target Tracking Algorithm

In this algorithm we only consider the problem of tracking a single moving target 
in a wireless sensor field. When the target moves through the sensor network, 

sensors which detect the target will make a cluster. The first sensor that detects 

the moving target is selected as the cluster head inside which data processing will 
take place to find the state information of the moving target. We assume that 
the existing sensor network is already localized using the DV-Hop algorithm and 

each sensor node in the network has the Hop Count Table. Fuither 

that there is no transmission delays. Using the distance information inside the 

cluster head, it will estimate the state information of the target and transmit it 
to a fusion center. Further, we assume that all the sensors are of the same type 

and have the same noise characteristics. Figure 5.7 shows the basic idea behind

this algorithm.

we assume

I:
During this algorithm we combine the DV-Hop location algorithm with

Kalman filtering. The DV-Hop algorithm is need for pr^bcataat.on of
The converted measurement and its associated
standard Kalman filter for recursive update of

I

get and measurement conversion. 

n°ise statistics are then used in a
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Figure 5.7: Localizing a newly added node

the target state. Figure 5.8 illustrates these main steps of the algorithm.

Step 1: Set target motion model and measurement 
model

Step 2: Calculate noise statistics of sensors

Step 3: Pre-localization using the DV-Hop algorithm

Step 4: Recursive update of the target state using Kalman 
filter

Figure 5.8: Novel tracking algorithm

We use the same target motion model presented in Section 5.2.2 in this algo­
rithm.

5.3.1 Measurement Model

Let 2t be the distance measurement to the target obtained by the 

tk and n be the actual distance between the sensor

sensor i at time 

i. and the target at time tk.
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Figure 5.7: Localizing a newly added node

the target state. Figure 5.8 illustrates these main steps of the algorithm.

Step 1: Set target motion model and 
model

measurement

Step 2: Calculate noise statistics of sensors

Step 3: Pre-localization using the DV-Hop algorithm

Step 4: Recursive update of the target state using Kalman 
filter

Figure 5.8: Novel tracking algorithm

We use the same target motion model presented in Section 5.2.2 in this algo­

rithm.

5.3.1 Measurement Model
U * be the distance measurement to the tar-get obtained by the sensor i at time 

'* and r, be the actual distance between the sensor. an t re arge a lm
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ri = y/\x - Xj)2 + {y- yi)2

where (x\yl) is the known location of the 

location of the target at time tk.

(5.21)

sensor i and {x. y) is the unknown

The measurement model presented in [60] was adopted in this algorithm. The 

model contains both additive and multiplicative noise components as follows.

Zi = {1 + 7i)ri +TH= Ti + Ui

where fa and 7\ are the additive and multiplicative Gaussian noise components 

of sensor i with means fin and /z7 and covariances and arespectively. These 

two components are uncorrelated.

(5.22)

The total noise of the sensor i is denoted by ui = fa -f- r^d. It is also Gaussian 

with mean fa = fin + r*/z7 and covariance of = + cr^rf, which are dependent
on actual distance r*.

From 5.22, the conditional probability density function (PDF) of the mea­
surement Z{, given (x,y) is as follows.

h - (Zj - Mi)]2{1
p{zi\z,y) expexp 2 of2 o\

(5.23)

Due to the multiplicative noise, different sensors have different noise magni­
tudes depending on the distance between the sensor and the target . We assume 

that there are nk (nk > 3) sensors have detected the target at time tk. and all the 

measurements are gathered at the cluster head. Let Zk denote the measurements 

with the same time stamps from all the nk sensors.

(5.24)2n*(fc)}Zk = {zi{k) z2{k)

to estimate the target state Xk 

asurements Zj, where j = 0,1,...., k.
Therefore the problem for the cluster head is 

denoted by Xk\k, given the me
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n =
where (zV/) is the known location of the 

location of the target at time tk.

(5.21)

sensor i and (x.y) is the unknown

The measurement model presented in |60] was adopted in this The
m0del contains both additive and multiplicative noise components as follows.

Zi ~ (1 + li)ri + Ui =Ti+ Ui (5.22)
where n, and 7* are the additive and multiplicative Gaussian noise components 

of sensor i with means nn and /r7 and covariances a2n and respectively. These 

two components are uncorrelated.

The total noise of the sensor i is denoted by U{ = Tii + Tyyt. It is also Gaussian 

with mean \Xi = jin + ri\x^ and covariance o\ = &„ + which are dependent- 
on actual distance r*.

From 5.22, the conditional probability density function (PDF) of the mea­
surement Zi, given (x,y) is as follows.

[r» ~ {Zj ~ Mi)]21 expexp 2 ofy/2lT(Ti2a}
(5.23)

have different noise magni-Due to the multiplicative noise, different 
tudes depending on the distance between the sensoi and the target. We assume

detected the target at time tk, and all the

sensors

that there are nk (nk > 3) sensors have
gathered at the cluster head. Let Z, denote the measurementsmeasurements are 

with the same time stamps from all the nk sensors.

(5.24)

estimate the target state Xk, 
f = 0,1,

• znk{k)}Zk = {z\{k) ^(fc)

Therefore the problem for the cluster head 

denoted by Xk[k, given the measurements Zjt where j
is to
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where {x\if) is the known locati 
location of the target at time U

The model preww in [eo| «s adop,ed in thin algorithm. The
model contains both additme and multiplicative none components aa follows.

Zi = ( 1 + 7On + ni = ri + ui

where and 7* are the additive and multiplicative Gaussian noise components 

of sensor i with means fin and ^ and covariances a2n and arespectively. These 

two components are uncorrelated.

sensor i and (x.y) is the unknown

(5.22)

The total noise of the sensor i is denoted by ui =■ rii+7yft. It is also Gaussian 

with mean [ii = nn + r^7 and covariance of = of + ofrf. which are dependent 
on actual distance r*.

From 5.22, the conditional probability density function (PDF) of the mea­
surement Zi, given (x,y) is as follows.

[r,- - (Cj - m)}2[Xj -Tj- Hi)2 1p(zi\x,y) = -X-
v Z'KCJi

exp
y/2x(Ti 2*?exp

(5.23)
have different noise magni- 

. We assume 

and all the

Due to the multiplicative noise, different sensors
the distance between the sensor and the target 

have detected the target at time tk, 
duster head. Let denote the measurements

tudes depending on 

that there are nk {nk > 3) sensors
measurements are gathered at the

from all the nk sensors.with the same time stamps
(5.24)

estimate the target state Xky 
= 0,1, ••••>

ZnMZk = {zi(k) z2[k)

for the cluster head is to est.
ments Zj, where jTherefore the problem 

denoted by Xk\k) g^ven ^ie meabU
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Ti - {ry _ yTj5 (5.21)

sensor i and (x, y) is the unknown
where (x\yl) is the known location of the 

location of the target at time tk.

The measurement model presented in [60] was adopted in this algorithm. The 

model contains both additive and multiplicative noise components as follows.

Zi = ( 1 + li)ri + ni = ri + Ui

where rii and 7, are the additive and multiplicative Gaussian noise components 

of sensor 1 with means \in and p7 and covariances a\ and a2, respectively. These 

two components are uncorrelated.

(5.22)

The total noise of the sensor i is denoted by u\ = tii -f- . It is also Gaussian
with mean = \xn + r^//7 and covariance of = cr^ which are dependent
on actual distance r*.

Prom 5.22, the conditional probability density function (PDF) of the mea­
surement Zi) given (x, y) is as follows.

\ji - (~; - Pi)]2(Xi -Vi- nif 11
p{zi\x,y) = expexp 2a?sfhiGi2a?y/2nai

(5.23)
Due to the multiplicative noise, different sensors have different noise magni­

tudes depending on the distance between the sensor and the target. We assume 

that there are nk (n^ > 3) sensors have detected the target at time £&, and all the 

measurements are gathered at the cluster head. Let. Zk denote the measurements 

with the same time stamps from all the fi* sensois.

(5.24)Zk = {-^l(fc) -2(k) * ‘ ‘ ~nfc(&)}

Therefore the problem for the cluster head is 
denoted by Xk]k, given the measurements Zv where j = 0,1..... . k.

to estimate the target state Xk,
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5.3.2 Target Tracking Algorithm

In this Section we explain 

explain how to find the noise characteristics of sensor nodes using least square 

algorithm. Then we explain the DV-Hop based pre-localization process of the 

proposed tracking algorithm. This will be followed by a Kalman filter for recursive 

estimation of the target state.

5.3.2.1 Noise Statistics Computation

We need to find a proper method to estimate the noise statistics of the sensors. 
Mean and covariance of the additive and the multiplicative noise of sensors can 

be estimated through experiments as follows.

our proposed tracking algorithm in detail. First we

Suppose we run m tests with target at different positions in the sensor field. 
Denote the actual position of target to be r* and we assume that is known. 
N measurement samples zfj = l,,Ar are collected for N different positions of 

target, where N is a large number.
Empirical estimates of the mean and variance can be found as follows.

N

(5.25)Mi = t;
3=13=1

, m. Using the ergodicity of the stationary process and the
—> oo, we

where i — 1,
independence between the additive and multiplicative noises, when A'

have

(5.26)fii E {zj} = r{ + riiUj + fin

ct?-> E {(z{ - E {4})2} = rW + (5.27)

Define approximation errors as;

(5.28)

(5.29)

ei(i) = Mi - (r* + DM7 + 

ev(i) = ~ iri°i +
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We can use the least squares algorithm to determine the estimates of ^ u? 

and „l We can mmimise J, and J2 defined as follows.

m m* = £«!(•) J- = £ w o
i= 1

(5.30)
i=i

The minimizations of Jx and J2 are given by,

dJx dJx dJx o. dAdal
£ — 0, dfi 7

Through calculations,

= 0, = 0 (5.31)da2

^ = e™^ Er=^
J L Ei=ir<

^ 1 = r E^rf 
r2

Z^i=i' t

Eili n(/d - n)
TZiifii - ri)

(5.32)m

E£i rtf
e:v.2 (5.33)m

5.3.2.2 Pre-localization using the DV-Hop algorithm

In this Section, we convert the distance measurements gathered at the cluster 

head, to a position information of the target using the DV-Hop algorithm. We 

assume that means and covariances are known. This measurement conversion 

process is called pre-localization.

First, we assume that the existing sensor network is already localized using 

the DV-Hop algorithm. That means each node in the network knows its Hop 

Count Table 4.3. Further, each node in the network has an estimated Hop Size 

associated with it. Once a moving target is detected by the sensors in the net­
work, following two step process will be carried out to pre-localize the target.

Step 1: Node that detects the moving target first (target is within the communi­
cation range) at time tk becomes the cluster head and its Hop Size (HopSizecH) 

is assigned as the Hop Size of the moving target at time tk-

Step 2: Cluster head estimates the location of the target at time tk using either
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trilateration / multilateration 

tance information in the Hop Count Table
or maximum likelihood estimation using the dis- 

as mentioned in Section 4.7.

Let (xu,yu) be the location of the target at time tk and (xj./y,) be the known 

location of the anchor node j. HopSizej is the estimated Hop Size of the node 

j. Then;

(Xu Xi)2 + (yu - yi)2 = cPul 
(xu - x2)2 + (yu - y2)2 = (Pu2

(xu xn)2 + (yu - yn)2 — d^n 

where n is the number of anchors in the network.

Coordinates of the target at time can be calculated using the following matrix 

operation.

Here

HopSizecH x HopsUi + 1 : if Cluster Head ^ ith anchor
: if Cluster Head = ith anchor

dui
HopSizecH

(5.34)

Then,

y 1 - VnXi - Xn

V2 - Vnx2 xn (5.35)A = —2 x

Un—l Vn

d2ul - d2un -x2 + x2n - y\ + y2 

d2u2-d2un-x2 + x2n-yt+yl

Xn—i X n

(5.36)B =

+ x2n - y2n_x + vl .rl2 — r2 aun 'Ln-1d2_ uu(n—1)

(5.37)Xu = (AtA)-1AtBp =
Vu

estimation for the position of the target atAfter pre-localization, we have an 

time 4 as follows.
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(5.38)

5.3.2.3 Kalman Filtering

One the pre-localization is done, we can represent the pre-localized estimation of 

the target at time tk as follows.

10 0 0 

0 0 10
Zk = Xk + vk = CXk + vk (5.39)

where vk is the converted measurement noise.

Now it is time to specify the characteristics of vk before the converted mea­
surement Zk can be used in Kalman filtering.

Assume that there are n (n > 3) which have detected the moving target 
simultaneously at time tk and the measurement noises of different sensors are
mutually independent. Defining, Z = {zi:i = 1.2,.... , 7?}, let’s denote p(Z\x,y)
the jointly conditional probability density function of Z given (x.y) as follows. 
Further, since the noises of individual sensors are mutually independent.

p{Z\x..y) = Y[v{zi\x-.v) (5.40)
1=1

where p(zi\x,y) is given in 5.23.

<Ji and fii depend on the actual distance between the target and sensor r* 

which are unknown and are related to the unknown parameters (x. y). Therefore 

make the assumption that the difference between and 7\ is very small and 

therefore of can be approximately replaced with a:. = <j\ + Then we can 

rewrite 5.23 as,

we

[(1 + )r» ~~1 (5.41)p(zi\x,y) - exp
Zi

where z% = z\ — fin 1S calibrated measurement.
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Using the Bayes iule, we have the following posterior probability distribution
of (z,y),

p(* 'V\7)-?(?\xiy)Pa(x,y)
(5.42)

where pa(x.y) is the prior probabihty density function of (x, y) known by the 

sensor nodes. Here we assume that pa(x.y) is uniform within the monitoring 

field. Therefore we can represent p(x. y\Z) can be represented as.

P(Z)

P(x,y\Z) = ap(Z\x,y) (5.43)

where a is independent of (x,y).

Prom 5.40 and 5.41;

1 E <5-44)p{Z\x,y) = exp
(27r)«nr=i^ i=i

Let

r-5 K1 + M7)r< ~ 5<]2f{x,y) = D (5.45)
i= 1

Then,

a (5.46)expp(x,y\Z) = (2 nr=i^
After pre-localization,

T

f(x,y)~f(x,y) + 5 * H(x,y) y_.1 (5.47)

where H(x) y) is the Hessian matrix given by,

- a2/(s,y) d-f{x,y) 
dP fcdy

d2f(x,y) d2f{x,y)
(5.48)

x=x,y=y

Then,
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p(x, y\Z) ~ /?exp < — _ X X nr — nr

- H(x,y)
y j 2/ - y

(5.49)
y-

where /? is a constant. That 
with zero mean and covariance matrix of

means Vk is approximately a Gaussian distribution

Rk = H \xk,yk)

Final step of the algorithm is to use the Kalman filter to update the target 
state using the pre-localization estimation and associated noises as follows.

(5.50)

Xk+i\k = FkJtk\k 

Rk+l\k = FkPk\kFk "h GkQwG%

Xk+Hk+1 = Xk+i\k + Kk+i(Zk+i — CXk+\k) 

Fk+l\k+l Fk+l\k Rk+l^k-r 1-^fe+l

Sk+1 = CPk+i\kCT -r Rk+1

Kk+i = Pk+i\kCTSkli

(5.51)

(5.52)

(5.53)

(5.54)

(5.55)

(5.56)

The initial estimates are given as X0\q = XQ and P0jo = Pq for some large 

positive definite Pq.

5.3.3 Simulation Results

In this Section we present Matlab based simulations that illustrate the perfor­
mances of the proposed tracking algorithm. We considered a scenario where the 

examined network consisted of N = 200 sensors deployed randomly in a monitor­
ing field with dimensions 100m x 100m.. Additive noise is Gaussian and white 

with zero mean and covariance of 0.01 and multiplicative noise is Gaussian and 

white with zero mean and covariance of 0.01 for every sensor. Sampling interval 
is Is. The initial state of the target is X0 = [0011]. The covariance matrix 

Qw of the target noisy acceleration is given by Qw = diag {0.01 0.01}.

In Figure 5.9, we can see two target tracing scenarios and it can be seen that 
the algorithm track the target’s trajectory closely. In trajectory 1 of Figure 5.9 

(a), target moves along an almost straight line (non-maneuvering target track- 

in trajectory 2 of Figure 5.9 (b), target moves along a path withing), where as in
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several sudden turns (maneuvering target tracking). Estimated path in Figure 

5.9 (a) is closer to the original path than in Figure 5.9 (b). Therefore it is evident 
that the proposed algorithm is more suitable for non-maneuvering target tracking.

>*

(a) Trajectory 1 (b) Trajectory 2

Figure 5.9: A realization of a target trajectory (Nodes - 200, Radio Range - 22m)

Figure 5.10 shows the performances of the algorithm expressed by the cumu­
lative distribution functions (CDFs) of RMSEs. 100 different realizations were 

used in the experiment.

0.9

0.8

I °-777)
S. 0.6

m 0.5
I
o 0.4
QO 0.3

0.2

0.1

0 2.521.50.5 10
RMSE in position (m)

Figure 5.10: CDF of RMSEs (Nodes - 200, Radio Range - 22m)

We further studied the impact of the number of anchors, total number of nodes
the accuracy of the tracking algorithm.and different radio ranges of sensors, on

the proposed algorithm is studied for its performance by varying 

the anchor ratio (AE). the total number of nodes (N) and the radio

one
Then, 

at a time,
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range (R) of the nodes as summarized in Table 5.1.

Table 5.1: Simulation Instances

Figure No Total Number of Nodes Anchor Ratio(%) Radio Range(m) 
^uu5.11(a)

5.11(b)
5.11(c)

variable 5-40 22
variable 100-400 10 22
200 10 variable 15-40

All the simulation results are averaged over 100 runs.

20
*— DV-Hop + Kalman 

~ ° DV-Hop_______18

16

14
I

12

S
8. 10

uj □ 
in 0

5 e

■E

■e-

4

10 15 20 25 30 35 40 150 250 300 350 400200
Number of Anchors Teas! Number of Nodes
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Figure 5.11: (a)RMSE with different number of anchors (b)RMSE with different total number of nodes (c)RMSE 
with different radio ranges

Through simulations it is quite evident that the proposed method of combining 

the DV-Hop algorithm with Kalman filter has improved the localization accuracy

of target the considerably.
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5.3.4 Performance Comparison

In this Section we compare the performance of proposed tracking algorithm with 
the work done in [61] with the modifications mentioned in Section 5.2. A see- 
nano of sensors having a radio range of 22m in a 100m x 100m area is used. The 

comparison of performances is done by varying the total number of nodes 

network. Anchor Ratio of the proposed algorithm is kept at a constant of 10%. 
The position error of the moving target is an average of over 100 simulations with 

different node configurations.

in the

Figure 5.12 compares the estimated paths of a target trajectory using the 

proposed algorithm and the algorithm reported in [61]. It is evident that for the 

given realization, [61] tracks the target more closely than the proposed algorithm.

30 13r
Aetna! patfi 
Measurement pores 
Estimatedpath:ProposedI 
Estimated path: [S2] j

12
25

11

■20

>s

15
;9

10
8

3525 3015 2045 1025 30 35 4010 15 20
xx

(b) Trajectory 2(a) Trajectory 1

Figure 5.12: Comparison of target tracking (Nodes — 200, Radio Range — 22m)

I,

Figure 5.13 compares the average error of position between the proposed al­
gorithm and work done in [61] with the modifications mentioned in Section 5.2 

while varying the total number of nodes in the network. Though these two al­
gorithms take two different approaches for tracking a moving target in a WSN 

the final outcome which is the average positioning error in these
)

we can compare 

two cases.

Through simulations it is clear that the algorithm in [61] out performs the 

proposed algorithm in the best part of the graph. This is mainly due to several 
key differences between the two algorithms as listed below.

the nodes in the existing network have been localized

F

• [61] assumes that
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Figure 5.13: Average positioning error with different number of nodes (Nodes = 200. Radio Range = 22m)

with zero enor. Theiefore fusion center knows the exact locations of the sensor 

nodes in the network, which are then used to estimate the target’s trajectory. 
However in the proposed algorithm we don’t assume that locations of the 

nodes in the existing network are known, instead locations of the sensor nodes 

in the existing network are calculated using the DV-Hop localization algorithm. 
Therefore there is a localization error associated with the sensor nodes in the 

existing network and that error effects the estimation accuracy of the moving 

target’s trajectory. Most of the practical sensor networks do not know the exact 
locations of all the sensor nodes in the network. Therefore we did not take that 
assumption in to our proposed tracking algorithm.

sensor

o [61] uses RSSI enabled sensor nodes to measure the respective power levels. 
That means the algorithm in [61] relies on a ranging technique to detect the mov­
ing target. However the proposed tracking algorithm does this initial measuring 

using the DV-Hop algorithm which is a range free technique. Ranging techniques 

always give better estimations than range free techniques in terms of accuracy 

though they are more expensive.

the Particle filter for recursive update of the state vector of the
Kalman filter. Particle filter 

when the measurement equations are

• [61]
moving target, whereas the proposed algorithm

uses
uses

is a more complex algorithm which suits
linear. Kalman filter can be used when the target dynamic and measurement 

The proposed algorithm produces a set of liner relationships
non­
equations are linear, 
after the measurement conversation process in pre-localization step.

i
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Communication cost and the 

that we need to consider in
computational cost are another two parameters

c\a-\\- n u comparison of these two algorithms. Computational
cost of [611 >s well above that of the proposed algorithm becaus 

plex Particle filter and the threshold calculation 

5.14 compares the computational

e of the more com­
using the power levels. Figure

cost of the two algorithms.

_ Proposed: DV-Hop + Kalman
~ i Binary sensors + Particle Filter5 1

2 4
1
.1 3
I(/>
U 2

'
100 150 200 250 300 350 400

Number of nodes

Figure 5.14: Computational cost comparison (Anchor Ratio = 10%, Radio Range ^ 22m)

Communication cost of the proposed algorithm is very much lower than the 

algorithm in [61]. In algorithm [61], all the sensors that detect the target at a cer­
tain time, should transmit a packet to the fusion center whereas in the proposed 

algorithm there’s no additional packet transmission is taking place to estimate 

the target states. This is because the proposed algorithm uses the already avail­
able Hop Count Table in the pre-localization step.

The proposed target tracking algorithm can be implemented as a fully dis­
tributed manner, where as [61] is a centralized algorithm. This is one of the key 

advantages of the proposed algorithm over the [61]. Further in [61] at least three 

sensors in the network should detect the moving target at once. Otherwise the 

algorithm fails to estimate the target states. However in the proposed tracking 

algorithm, it is enough to detect the target only by 

This is due to the pre-localization step of the algorithm. Therefore the proposed 

algorithm is more suitable to apply in emergency environments where nodes can 

be destroyed, due to its distributive nature, simplicity and demand of low 

nodes.

a one sensor in the network.

sensor

of the proposed tracking algorithm, we appliedTo improve the performances
;
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the proposed improved DV-Hop algorithm 

localization step. Through this modification 

accuracy 

5.15.

introduced in Section 4.2, in the pre-
- we could improve the estimation 

o t e proposed target tracking algorithm further as shown in Figure

2.2

~y~ Binary sensors - Panicle F::!er j
~e~ Pfoposed: DV-Hoo * Kaiman 
----------Proposed: Proposed Algor.-T.m 2 - Karrar. f

2

1.8
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Figure 5.15: Average positioning error with different number of nodes (Nodes = 200, Radio Range = 22m)

5.3.5 Proposed Tracking Algorithm in an Emergency Environment

In this Section we apply the proposed algorithm in an emergency situation where 

nodes are getting destroyed due to a spreading fire. A scenario of 200 sensors 

having a radio range of 22m in a 100m x 100m area is used as the initial network 

configuration. Radius of the fire gradually increases so that the nodes in the 

network get destroyed. We try to track a moving target with different radius of 

fire and compare the average position error of the target tracking. The position 

error of the moving target is an average of over 100 simulations with different 

node configurations.

i

Figure 5.16 shows the simulation environment of the tracking algorithm in a 

fire emergency.

Figure 5.17 shows the RAISE in position of the proposed target tracking al­

gorithm with different radius of fire in the network.

i

Through simulations it is very clear that the RMSE of position increases when 

the radius of fire increases. Both anchors and the other nodes in the network 

destroyed due to the fire and when fire increases with time more and more nodes 

in the network will be destroyed. Until there is at least a single node that detects

are
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Figure 5.16: Target tracking in a Are situation (Initial configuration- Anchors = 
= 22m) 20, Nodes = 200, Radio Range
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Figure 5.17: RMSE.in position with different radius of fire (Initial configuration: Anchors = 20, Nodes = 200, 
Radio Range = 22m)

the moving target at a given time, the algorithm can estimate the target states. 
However due to the destruction of anchors which could have been selected as 

the cluster head, the measurement error comes out of pre-localization step can 

increase resulting an increase in RMSE in position of the moving target. That s 

why when the radius of fire increases sometimes the RMSE in position of the 

moving target increases.

nodes in the existing network are grad-In algorithm [61], when the 

ually dying, estimation accuracy 

proposed algorithm, we don’t 
posed tracking algorithm is very m 

emergency environments.

sensor
of the moving target reduces. However in the 

have this problem severely. Therefore the pro- 

uch suitable for target tracking purposes in
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Conclusion5.3.6

In this Section, we proposed a new approach for target tracking in wireless sensor 

network by combining the DV-Hop algorithm with Kalman filtering, based on 

the work reported in [60]. The DV-Hop algorithm is used for pre-localization 

of the target and measurement conversion. The converted measurement and its 

associated noise statistics are then used in a standard Kalman filter for recursive 

update of the target state. Simulation results have shown that the proposed ap­
proach improves the tracking accuracy compared to the DV-Hop localization.

Then we applied the proposed tracking algorithm in a fire emergency 

ronment and compared the results. Simulation results show that the proposed 

algorithm in good enough to apply in such emergency environments.

envi-
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Chapter 6

navigation SUPPORT

The main objective of this Chapter is to a present a novel navigation support 
algorithm for fire fighters m an emergency situation. In previous two Chapters 

we applied localization and tracking functionalities in an emergency environment 
and here we extend that by incorporating navigation support to rescue operations.

6.1 Importance of Localization and. Navigation

Localization and navigation support is very useful in many day to day applica­
tions, but essential in emergency rescue operations. Teams must be able to reach 

incident locations safely and quickly and incident commanders must be able to 

keep track of their locations [7]. The simple task of getting out of a building 

becomes a challenge with little or no visibility due to smoke and power failure. 
High levels of mental and physical stress add to the difficulty: getting lost, in a 

burning or collapsing building can have fatal consequences for both the rescue 

personnel and the building’s occupants as oxygen supplies run out and medical 
attention is delayed [7]. It has been identified that lost inside as a major cause 

of injuries to fire fighters. It is also reported that disorientation and failure to 

locate victims are contributing factors to fire fighter deaths [7].

The following paragraph from [7], describes the importance of proper naviga- 

tion support for fire fighters.

few seconds to reach safety.In some instances, fire fighters might have onh a 
They must find the exit as quickly as possible and might not be able to retreat 

path they used to enter the building owing to a collapsed ceil-
Akernative exits might be available but will nor be clearly visible.

team must be able to find

along the same 

ing or floor. *
When a fire fighter radios 

that person. Even when situations aie 1 
time can be wasted by searching the same

distress call, the rescue
iot immediately life threatening, precious

room twice or failing to search another.
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The incident commander a!so needs know elements of ^ ^ Mam
members locat.ons, and the parts of the building that haw already been searched.

Current Practices6.1-1

Fire fighters have developed navigation practices for use in poor visibility. Details 

vary, but overall, they use the same ideas worldwide. These methods tend to be 

simple and piactical, and the equipment is seemingly low-tech and very robust [7]. 
The following paragiaph which was extracted form [7] describes such a technique.

Following a hose is a simple method for finding the exit in a dark or smoky 

building. If no hose is available, fire fighters can use dedicated ropes called life­
lines that connect them to a point outside the dangerous area. The other end 

remain attached if a new team comes in to continue the search, or fire fighters can 

attach additional lines to the main lifeline and branch off in different directions 

while remaining physically linked to the rest of the team. A series of knots on 

the main lifeline helps fire fighters determine the direction and distance to the 

exit and can serve as reference points when radioing positions to a commander. 
Likewise, a flashlight left in a room’s doorway helps locate the exit and indicates 

to colleagues that the room is being searched; a chalk mark on the door indicates 

that a room has already been searched. Teams returning from a search mission 

sketch the building’s layout to assist the commander and any further teams.

can

can

Figure 6.1 shows a sketch of a lifeline and Figure 6.2 shows how the fire fight­

ers follow the lifeline for navigation purpose.

6.2 Related Work

In the literature there are quite a few work addressing the problem of navigation 

support in emergency situations. Few of them are listed below.

promising technolog}' for fire rescue applica­
tive rescue system and proposed

• Sha et al. [3] presented WSNs 
tions. The paper specified the requirements of a

as a

FireNet, the WSN based architecture.

lied LifeNet for using an ad-hoc sensor 

wearable system to support firefight-
• Klann et al. [4] proposed a concept ca 
network providing relative positioning and a
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Figure 6.1: Lifeline for fire fighters (taken form Shropshire Fire and Rescue Service
- Brigade Order 7)

Figure 6.2: Incoming team follows the lifeline (taken form Shropshire Fire and Rescue Service - Brigade Order
7)

ers at indoor-navigation under impaired visibility.

© Fischer et al. [7] presented a survey on location and navigation support for 
emergency responders. The paper describes the current localization and navi­
gation techniques and challenges on 

provides a solid review on currently available location and navigation support 
systems for emergency responders.

high-tech location systems. At the end it

• Tseng et al. [65] proposed a navigation algorithm for safely guiding people to 

quickly escape from a hazardous area. The design allows multiple evts and mu - 
tiple emergency events in the sensing held- During a non-emergency situatmn, 
sensors are responsible for monitoring the environment. When ^
are detected, the protocol can quickly « — “ ‘“ ““ 

establish escape paths that are as safe as possible leadmg to exrts. part.cular,

115



whe” surr°m’det* by haZMds' *”»» will try ^de 

from emergency locations as possible. P as farther away

„ Li et al. [66] used directed graph to model

movements were regarded as network Bows on the graph. Bv calculating the 

max,mum flow and mm,mum cut on the graph, the system couM provjde ^ 

rescue commands to eliminate key danger 

duce congestion and save trapped people.

the emergency regions. Human’s

cus areas, which may significantly re-

• Tseng et al [67] combined a distributed navigation algorithm with WSNs to 

help safely guide people to a building exit while helping them avoid hazardous 

areas. At noimal time, sensors monitor the environment. When the sensors de­
tect emeigency events, the protocol quickly separates hazardous areas from safe 

areas, and the sensors establish escape paths.

6.3 Proposed Method to Emulate Lifeline Technique using WSNs

In this Section, we propose a WSN based mechanism to emulate the technique 

of lifeline used by the fire fighters. First we assume that the monitoring area is 

equipped with a grid based WSN. Grid based sensor network is not essential and
even a randomly deployed sensor network is quite enough to run the algorithm. 
However, in this case we use a deterministically deployed sensor network as the
back bone to run the algorithm to lay the lifeline (rope). Instead of physically 

laying a rope form a starting point to the destination point through the fire field, 
nodes will be thrown along the path so that other fire fighters can benew sensor

followed the path to go to the destination. Figure 6.3 shows the deployment of 
the new sensor nodes alone the safest path through the fire field from the starting

point to the destination.

6.3.1 Algorithm
r , , :n the grid of the monitoring area provides
Let s assume that each seusot <* ^ ^ ^ |K| „ „ a, time

It of the conditions of the environment
. We

a severity index Si(k), where
4- Severity index is a cumulative iesu 

factors such as temperature,
humidity, smoke and wind speed

state of the firedefending
assume that severity index is fully ca

index of sensor

on pable of representing the
that the fire at that area ismeans

In the field. Higher severity
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Figure 6.3: Localizing a newly added node

higher in magnitude. We assume that each and 

computing the severity index of the present moment and few time steps ahead as 

[si(k) Si(k + l) Si(h + a)].

every sensor node is capable of

Let the severity matrix of the network at time tk as. Sk = {s\(k) s2{k) • • • sn(k)} 

where n is the number of sensors in the network.

Then the fire fighter has to use the knowledge of severity matrix of time tk to 

tk+a to make the next safest movement to go to the required destination. Here 

the parameter a can be either 1 or 2 or 10 or 100 depending on the nature of the 

situation and the computational power of the system.

6.3.2 Simulation Results

Figure 6.4 shows a scenario of a spreading fire in an indoor environment which 

is simulated using Fire Dynamics Simulator (FDS). The objective is to find the 

safest path between two given points in the fire field 

to emulate the lifeline.

to throw new sensor nodes

Figure 6.5 shows the temperature distribution at each point with time.

that the severity index of each sensor node is 

distribution of the field. Now let’s imagine that 
oint 45 of the fire field given in Figure

For this simulation we assume 

proportional to the temperature 

the fire fighters need to go from point 2 to p
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(c) At t = 30

Figure 6.4: Spreading firc in an indoor environment

(a) At t = 5

(c) At t = 30

Figure 6.5: Temperature Distribution

6-6. Based on the severity values this path will be changed as shown in Figure 6.6.

According to the Figure 6.6, it is very clear that depending on the severity
mdex distribution, the safest path changes and fire fighters have to follow that
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Figure 6.6: Laying new sensors to emulate the lifeline

path. Computations to be done to find the path can be done at a central location 

which is under the control of the incident commander.

6.3.3 Conclusion

In this Chapter we studied the importance of localization and navigation suppoit 
for emergency situations such as a fire. Further, we propose a new method to

emulate the laying of lifeline using WSNs 
in emergency environments. Simulation results show that the proposed method 

can be practically applied in emergency situations as navigation guide for the fire

fighters.

navigation support for fire fightersas a
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Chapter 7

CONCLUSION

The overall objective of this research is to develop a suit of algorithms for lo­
calization, tracking and navigation of wireless sensor nodes in multistory indoor 

environments in emergency situations where nodes can be destroyed, added anew 

and mobile nodes can be present. To achieve these goals we used the DV-Hop 

algorithm as our core localization technique. The research can be summarized as 

follows. Section 7.1 provides a summary of the research carried out and Section 

7.2 a summary of the key contributions.

7.1 Research Summary

7.1.1 Introduction to Localization

Localization is the task of determining the physical coordinates of sensor nodes 

or spatial relationship among them. Work reported in this research describes 

what localization means and classifies the localization algorithms as centralized 

vs distributed, range based vs range free and event driven localization algorithms.

7.1.2 Study of the DV-Hop Algorithm

The work reported in this thesis uses the DV-Hop algorithm as the core. Even 

though the DV-Hop algorithm is an attractive option for the localization of nodes 

in a wireless sensor network due to its simplicity, it suffers from pool accuracy. 
This was due to several fundamental reasons that we investigated in depth during 

the research. Further, we evaluated the performances of the DV-Hop algorithm 

for its accuracy, communication cost and computational cost while varying in 

different network parameters, configurations and node positioning. Ultimately, 
extended the 2D DV-Hop algorithm to 3D environments, and evaluated the

performances.

Many scholars have paid their attention to improve the DV-Hop algorithm.
critical literature survey and a comparative

we

In this thesis we have reported a
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performance survey on a selected set of improved DV-Hop algorithms.

7X3 Patfoned Improved DV-Hop Algorithms for Improved Local-

In this research we proposed three novel improved DV-Hop algorithms, 
two are based on using anchor position re-estimation

The first
in order to obtain a bet- 

ter estimate of the Hop Size. Simulation results show that both the proposed 

algorithms provide improvements over the DV-Hop algorithm. A performance 

comparison was provided. Localization error variance also is lower in both the
proposed algorithms, and thus they ensure more steady performance.

The third proposed algorithm was a DV-Hop based localization scheme that 
can be used for localizing grid-based sensor networks. We assumed that the 

sensor network was deployed in a controlled manner, where the sensors are fixed 

randomly on a regular grid. Through simulations it was evident that the proposed 

algorithm can localize more nodes with zero localization error.

7.1.4 Proposed Target Tracking Algorithm

Target tracking is the function of tracking a moving object in a WSN. In this 

research, we proposed a new approach for target tracking in a wireless sensor 

network by combining the DV-Hop algorithm with Kalman filtering. The DV-Hop 

algorithm was used for pre-localization of the target and measurement conversion. 
The converted measurement and its associated noise statistics were then used in 

a standard Kalman filter for recursive update of the target state. Simulation 

results have shown that the proposed approach improves the tracking accuracy 

compared to the DV-Hop localization, while retaining the distributed nature of 

the algorithm.

7.1.5 Extending the DV-Hop Algorithm for Emergency Environments

are de-Though localization is studied widely in literature, few such algorithms
fire situations due to multiple challenges.ployed in emergency situations such 

We studied these key challenges for localisation to an emergency environment
and mobile nodes cab be presented.

as

where nodes can be destroyed, added a new

sensor nodes to the existing network is a common requirement
can beIntroducing new 

in WSN related applications, 
newly added randomly for

Especially nodes with unknown locations 

additional information gathering during an emergency
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situation such as a ** **** these newly addd nodes shouid be Wised as 

quickly as possible with the best possible 

a novel method to localize a
algorithm.

7.1.6 Proposed Navigation Support Technique for Fire Fighters

Here, we proposed a WSN based mechanism
lifeline, a physically laid rope used by the fire fighters in an emergency situation. 
Simulation results showed that the proposed method can be practically applied 

in emergency situations ns & navigation guide for fire fight

7.2 Key Contributions

The key contributions of this research are:

accuracy. In this research, we proposed 
newly introduced node with the help of the DV-Hop

to emulate the technique of the

ers.

o An in-depth analysis of the DV-Hop algorithm and its improvements 

© Novel improvements to the DV-Hop algorithm

© A novel algorithm to localize newly introduced node to an existing network 

• A novel tracking algorithm with the DV-Hop as the core 

© A navigation support technique for mobile nodes 

Numerical results of those findings can be summarized as follows.

Table 7.1 summarizes the performance comparison of the proposed novel DV- 
Hop based algorithms relative to the DV-Hop algorithm.

are based on using an-The two novel algorithms proposed in this research
order to obtain a better estimate of the Hop Size.chor position re-estimation in 

Through simulations it is evident that both the algorithms show improvement m 

accuracy over the DV-Hop algorithm. On average Proposed Algorithm 1 shows
f 10% and Proposed Algorithm 2 shows an accuracyan accuracy improvement o 

improvement of 7% over the DV-Hop algorithm.

The optimum Hop Site computation requires an

both algorithms need more K|1IT';'is ..rol]11!;| 10% higher than 
gorithm. Also, the computational cos g
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Table 7.1: Performance Compariso
n of noyel algorith

Averai^~Locaiization 
Error Improvement

ms relative to the DV-Hop algorithm
Algorithm

Comp.
Time

Com.
Cost

with an­
chors 
Figure 
4.5(a)

with
nodes
Figure
4.6(a)

with
range
Figure
4-7(a)
11%

with an­
chors 
Figure
4.8Algorithm 1 

(Section 4.1) 
Algorithm 2
(Section 4.2)

11% 10% +15% higher

8% 6% 6% -5% higher

Algorithm 2. Algorithm 1 introduces a centralized 

the DV-Hop algorithm, while Algorithm 2 retains the original distributed 

Thus, Algorithm 1 incurs a higher communications cost than Algorithm 2.

processing component into 

nature.

Table 7.2 summarizes the comparison of RAISE in position of the proposed 

tracking algorithm and [61] and Table 7.3 summarizes the compariosn of compu­
tational cost of the two algorithms in terms of the estimation time.

Table 7.2: Estimation error comparison of novel tracking algorithm (Radio Range — 22m)

300 350 400200 250Nodes 100 150
0.8489 0.788880.91351.0312RMSE (to) [61] 1.23771.54472.0756
1.5038 1.50091.50361.51611.52921.5776RMSE (m)

Proposed (Section 5.3)
1.8399

Estimation time comparison of novel tracking algorithm (Radio Range 22m)Table 7.3:

400350300250200150100Nodes 5.34604.97683.89333.4887
0.3482

2.87682.09521.8711Time (s) [61) 1.31170.89410.57130.18180.08390.0541Time (s)
Proposed (Section 5.3)

Through simulations it is evident that the estimation accuracy of the targe 

trajectory of the proposed algorithm is lower than that of .he | 1|. However W 

needs around 15 times more computational cos. due to its h,6h complexity mid 

also higher communication cost than oui algor’
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The proposed target tracking algorithm 

tributed manner, where as [61] is a 

advantages of the proposed algorithm

can be implemented as a fully dis- 
centralized algorithm. This is one of the key

sensors in the network should detect the ^ ^ Furtiier ln (611 at least three 

algorithm fails to estimate the target the
algorithm, it is enough to detect the target only by ^ Pr°P°Sed trackinS 

Therefore the proposed algorithm is
a one sensor in the network, 

more suitable to apply in emergency envi- 
ronments where nodes can be destroyed, due to its distributive nature, simplicity 

and demand for fewer sensor nodes.

Both anchors and the other nodes in the network are destroyed due to the fire 

and when fire increases with time more and more nodes in the network will be 
destroyed. Until there is at least a single node that detects the moving target at
a given time, the proposed algorithm can estimate the target states. In algorithm 

[61], when the sensoi nodes in the existing network are gradually dying, estimation 

accuracy of the moving target reduces. However in the proposed algorith 

do not have this problem severely as shown in Table 7.4. Therefore the proposed 

tracking algorithm is very much suitable for target tracking purposes in emergency

m, we

environments.
Table 7.4: Estimation error comparison of novel tracking algorithm in an emergency environment (Radio Range 
- 22m)

30252015105Radius 0
of fire (to)

1.75691.67211.56881.46031.43211.3347RMSE (to) [61] 1.2377
1.55691.55691.55691.55101.55101.5510RMSE (m) 

Proposed 
(Section 5.3)

1.5292

7.3 Future Work

of future research have become apparent during the course 

briefly outline them.
Some interesting areas 

of this research. In this Section we
Improving the tar-get tracking accuracy further: In this research, for the

bined the DV-Hop algorithm with Kalman 

. In future, researchers can 

this proposed algo-
techniques such as Extended Kalman

first time in literature we com
novel tracking algorithm 

the estimation
filtering to produce 

find new ways of improving
Combining different, filtering

accuracy

rithm.
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filtering and Particle filtering with the DV-Hop algorithm 

esting research area.
can be an inter-

Navigation support for fire fighters: Navigation support for fire fighters 

fire field is a must. Fire fighters have developed navigation practices for 
in poor visibility. Details vary, but overall, they

m a
use

use the same ideas world­
wide. These methods tend to be simple and practical, and the equipment
is seemingly low-tech and very robust. In this research we emulated the
lifeline navigation technique used by fire fighters to find their way in a fire 

filed. Likewise in future, researches can combine the WSNs with navigation 

practices used by fire fighters for better navigation solutions.

Practical implementation of the proposed algorithms: Results of the al­
gorithms presented in this thesis are based on Matlab simulations due to 

the lack of hardware facilities. However in practical environments, there can 

be changes in performances of the algorithms. Therefore in future, these 

proposed algorithms can be implemented in a real WSN for performance 

evaluation.
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