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APPENDIX A

Convert

The basic design is done by SwitcherPro software depending on the 

requirement. Figure A.1 shows the schematic of the software design.

C1 and C9 capacitors 

cost is reduced due to this replacement. Also, the input ripple is reduced, because the 

capacitor has less ESR and high capacitance. The input voltage ripple is calculated as 

follows. 
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The voltage ripple is lesser than the required level, so this capacitor is 

suitable for this design. This capacitor can tolerate up to 25V, therefore, it can 

withstand the input voltage. 

Inductor (L1) replaced with the 68µH. The inductor can tolerate up to 1.5A. 

Also, it reduces the current ripple in the output side and it eliminates the spikes in the 

output side. The RMS current and the maximum current are calculated as follows. 
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IL(RMS) is lesser than the inductor maximum RMS current (1.5A). Also, IL(PK) 

is lesser than the saturation current of the inductor (1.4A). The calculation is done at 

maximum current. Therefore, this inductor is suitable for the design. 

C2 capacitor is replaced with 330µF, because the output filtering is increased 

and the cost wise both are same. The cutoff frequency for output filleting can be 

calculated as follow. The maximum rated voltage is 6.3V; therefore it can tolerate 

the output voltage (5V). 
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FLC is very lesser than the switching frequency (500kHz). Therefore, this 

capacitor and inductor value can produce a good filtering on the output side. The 

maximum allowable output capacitor ESR is calculated as follows. 
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ESR maximum is greater than the C2 capacitor ESR (50mΩ). Therefore, it 

can be used for this application. Output voltage ripple for the selected components 

can be calculated as follows. 
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Vpk-pk is lesser than the required level (0.5V). Therefore, it satisfies the 

requirement. The component which was selected for this converter design can satisfy 

the specification. 
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Therefore, the motor can start the rotation immediately. The maximum acceleration 

steps delay. The actual delay is more than this. 
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APPENDIX C: QEI MODULE DESCRIPTION 

The incremental quadrature encoder generates the 3 pulse output. Those 

signals are QEA, QEB and index. The encoder generates the pulses depending on the 

angular position of the motor. The index signal is used to identify the reference (0th 

position) of the motor. The index pulse generated position is considered as the 

reference point. Therefore, the index signal of the encoder is used to create the 

absolute position reading. There is a 90° phase shift between QEA and QEB signals. 

Figure C.1 shows the waveform of these signals. The encoder generates 10,000 

pulses per revolution. 

 
Figure C.1: Encoder pulse 

The QEI module in the microcontroller is using these signals and counts the 

position. The QEI module increased and decreased the counter depending on the 

rotation direction. It uses the 16bit counter for the position counting. There are 2 

different modes of counting in QEI module. Those are x2 and x4 mode. Figure C.2  

shows the counter changing points in the waveform for each mode. 

The QEI module can detect 4 positions within the one clock period in x4 

mode. The encoder resolution is higher than the x2 mode. The QEI module can 

detect 40,000 positions in one revolution. Therefore, the encoder resolution is 

0.009°, so x4 mode is selected for this design. The index pulse width covers the 2 

encoder positions in x4 mode. The QEI module can select one position as the index 

position according to the configuration. We can select QEA and QEB logic value for 

the index position detection. 
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Figure C.2: Mode of counting 

Example:-  

The QEA and QEB should be logic 1 for detecting the index point. If the 

index pulse and another 2 signal are higher than only the index position will be 

detected. 

 
Figure C.3: Index detection 

Table C.1: Encoder specification 

Operation voltage 3.3 - 28V 

Input current 100mA 

Output format incremental 

Output type Open collector 

Pulses 10000 pulse per revolution 

Index One per revolution 

Max Shaft speed 8000RPM 

Bore size 5mm 

Max Acceleration 1 x105rad/s2 

Starting torque 0.001Nm 
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