LB/DON/09/02 / 14)

PERFORMANCE OF THE BIOLOGICAL UNIT IN POLISHING THE EFFLUENT

AT

UNILEVER CEYLON (LTD)

A Dissertation submitted in partial fulfillment of the requirement for the Master's of Engineering Degree in Environmental Engineering & Mahagement Electronic Theses & Dissertations www.lib.mrt.ac.lk

> By W.R.L. Hiranthi Jansz

> > 7 18 1

Department of Civil Engineering University of Moratuwa Sri Lanka

පත්ත කත්තුව ලංකා මේ කාලය මේ ප්රත්ත පරිදාගන පරිදාගන

University of Moratuwa

74342

74342

DECLARATION

. . . .

"This dissertation has not been previously presented in whole or part to any university or Institute for a higher degree"

Mrs. W.R.L.Hiranthi JanszUniversity of Moratuwa, Sri Lanka. June 2001 Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgement

I am very grateful to the Head and all staff of the Department of Civil Engineering of the University of Moratuwa, for providing me with the opportunity to pursue the Masters Degree in Environmental Engineering and Management, and their unceasing assistance, throughout the course.

A very special thanks and deep appreciation go to Senior Lecturer Mr. S. Pathinather, the course co-ordinator who is also the supervisor of this research study, for his excellent guidance, valuable suggestions, constant encouragement, advice and the precious time he devoted to bring the best out of me, towards this study.

I extend my profound gratitude to the Management of Unilever Ceylon Ltd for permitting me to study their Effluent Treatment Plant in their production facility which was taken up for this research study, and especially Mr. D.J.A. Wickrema, the Plant Manager for his technical Electronic Theses & Dissertations support and devotion of his valuable time in the midst of his tight schedule of work.

I also wish to specially thank the Management of the Central Environmental Authority, my Employer for sponsoring me to follow this course and for granting me the permission to use its Laboratory and other facilities where the analytical work pertaining to this study was carried out. In this regard a special word of thanks go to the staff of the laboratory especially Mrs. Priyanthi Perera, Chemist, who were very helpful during the analytical work. My acknowledgement would be incomplete if 1 do not reminisce Mr. Bharatha Wijesundara, Senior Microbiologist from Unilever Laboratory. Hence a special thanks to him.

I take this opportunity to gratefully acknowledge the services provided by the University of Kelaniya and specially the Librarian Mr. L. Jayatissa, to enable me to make use of the library facilities for my references.

Finally I wish to thank my husband Stanley for his patience, understanding, motivation and for his assistance in every possible way.

2

Abstract

The Effluent Treatment Plant (ETP) of Unilever Ceylon Ltd. which was the basis for this study, consists of Physical, Chemical & Biological treatment units. The objective of this research study was to evaluate the performance of the biological unit of Activated Sludge. The ETP is continuously operating 24 hours a day. A number of process problems occur due to large variations of flow & characteristics of influent in the daily load. In addition to that, operational practice also contribute to the same.

Although there are some problems during the operational stage, the results indicate that the system is operating quite efficiently with respect to COD, BOD removals and also University of Moratuwa, Sri Lanka. the concentrations of the above in the treated effluent neet the istandards stipulated by the CEA. (ie. 70% of the data collected met the general standard of effluents discharged to inland surface waters stipulated by the CEA). Also this research study indicates that the plant can assimilate considerable high shock loads of the above pollutants without significant treatment failure. This may be due to the fact that the plant is opearing at low average design flow during the period of study.

During the study period, sudden discharges of Caustic effluents were observed. Such discharges resulted foam formation problems in the treatment plant. This has affected specially in fat removal unit which is very important for the effective performance of the biological unit. Sludge bulking and very high mixed liquor suspended solids have been identified to be contributing to the lower efficiency.

IV

It is concluded that,

- 1. Dissolved Oxygen concentration is extremely low in aeration tank
- 2. Nitrogen availability in the aeration tank is not quite sufficient for cell synthesis
- 3. Low Food to Micro-Organism (F/M) values due to high mixed liquor concentration in the aeration tank etc.

Accordingly remedial measures have been recommended as follows;

- 1. Install a closed loop control system in pH adjustments and chemical dosing in the process
- 2. Increase the Dissolved Oxygen level in the aeration tank
- 3. Feed nutrients as required by the ratio of BOD₅:N:P: = 100:5:1 University of Moratuwa, Sri Lanka.
- 4. Maintain Mixed liquor suspended solids concentration in the range of 3000-4500 mg/l etc. www.lib.mrt.ac.lk

List of Figures

1

Figure 1.1	-	Activated Sludge Process Flow Diagram
Figure 1.2	-	Total Effluent at Unilever
Figure 1.3	-	Location of Unilever Manufacturing Facility
Figure 2.1	-	Relationship between F/M and DO relative to Sludge Bulking
Figure 4.1	-	BOD ₅ Variation in Aeration Tank
Figure 4.2	-	COD Variation in Aeration Tank
Figure 4.3	-	pH Variation in Aeration Tank
Figure 4.4	-	Conductivity Variation in Aeration Tank
Figure 4.5	-	TSS variation in Aeration Tank
Figure 4.6	Univ Elec	resity of Moratuwa, Sri Lanka. Turbidity Variation in Aeration Tank tronic Theses & Dissertations
Figure 4.7	WWV	v. NO. 3 Wariation in Aeration Tank
Figure 4.8	-	PO 4 Variation in Aeration Tank

Figure 4.9 - DO Variation in Aeration Tank

List of Tables

- Table 3.1-Analytical Techniques
- Table 4.1-Sample Nos & Dates
- Table 4.2 F/M variation in terms of BOD₅ & COD
- Table 4.3-Volumetric Loading in terms of BOD5 & COD
- Table 4.4-Removal Efficiencies of BOD5, COD, TSS in Biological Unit
- Table 4.5-MLSS Content in Aeration Tank
- Table 4.6-DO Content in Aeration Tank
- Table 4.7-SVI values of Aeration Tank
- Table 4.8

Table 4.9

Nitrogen Requirement for the Synthesis of Cells University of Moratuwa, Sri Lanka. Phosphonus Requirement for the Synthesis of Cells www.lib.mrt.ac.lk

List of Annexures

4

A

Annexure 1.1	-	Jeneral Standards for Discharge of Effluents into Inland Water Bodies	
Annexure 1.2	-	Conventional Waste Water Treatment Processes	
Annexure 3.1	-	Flow Chart of ETP	

List of Appendices

Appendix 3.2	-	Raw Waste Water Characteristics
Appendix 4.1	-	Calculation of Waste Water Flowrate
Appendix 4.2	-	BOD ₅ & COD Characteristics
Appendix 4.3		University of Moratuwa, Sri Lanka. Conductivity & pH characteristics Electronic Theses & Dissertations
Appendix 4.4		TSS & Turbidity Characteristics
Appendix 4.5	-	PO ₄ & NO ₃ ⁻ Characteristics
Appendix 4.6	-	Calculation of Nitrogen & Phosphorus
Appendix 4.7	-	Identified Bacteria, Protozoa & Rotifers in Aeration Tank
Appendix 5.1	-	Correlation between BOD ₅ & COD

List of Plates

Plate 1	-	Aeration Tank
Plate 2	-	Final Clarifier

Table of Contents

Acknowledgement	iii
Abstract	iv
List of Figures	vi
List of Tables	vii
List of Annexures	viii
List of Appendices	viii
List of Plates	viii
Table of Contents	ix
Abbreviations	xii

Chapter 1 Industrial Waste Generation & Overviews of the Industrial Wastewater Treatment

1.1	Introduction	1
1.1.1	Industrial Wastewater Treatment Methods	3
1.1.2	Introduction to Biological unit processes	4
1.1.2.1	Activated Sludge	4
1.1.2.2	Bulking in the Activated Sludgeratuwa, Sri Lanka,	6
1.1.2.3	Process Microbilogynic Theses & Dissertations	7
1.2	Unilever Ceylon Ltd Production Process &	9
	Wastewater Treatment Plant	
1.2.1	Sources of Wastewater of at Unilever	9
1.2.2	Process Description of Effluent Treatment Plant	10
1.3	Aim of the Project	14
1.3.1	Arrangement of Dissertation	14
Chapter 2	Review of Literature	
Chapter 2 2.1	Review of Literature	15
Chapter 2 2.1 2.1.1	Review of Literature Introduction Treatment and Pretreatment Requirements	15 15
Chapter 2 2.1 2.1.1	Review of Literature Introduction Treatment and Pretreatment Requirements for Industrial Wastewater	15 15
Chapter 2 2.1 2.1.1 2.1.2	Review of Literature Introduction Treatment and Pretreatment Requirements for Industrial Wastewater Temperature Effect	15 15 16
Chapter 2 2.1 2.1.1 2.1.2 2.1.3	Review of Literature Introduction Treatment and Pretreatment Requirements for Industrial Wastewater Temperature Effect Activated Sludge bulking due to Filamentous Bacteria	15 15 16 17
Chapter 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4	Review of Literature Introduction Treatment and Pretreatment Requirements for Industrial Wastewater Temperature Effect Activated Sludge bulking due to Filamentous Bacteria Activated Sludge Bulking due to non Filamentous	15 15 16 17 17
Chapter 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4	Review of Literature Introduction Treatment and Pretreatment Requirements for Industrial Wastewater Temperature Effect Activated Sludge bulking due to Filamentous Bacteria Activated Sludge Bulking due to non Filamentous Bacteria	15 15 16 17 17
Chapter 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Review of Literature Introduction Treatment and Pretreatment Requirements for Industrial Wastewater Temperature Effect Activated Sludge bulking due to Filamentous Bacteria Activated Sludge Bulking due to non Filamentous Bacteria Effect of Hydraulic Regime or Degree of Mixing in an	15 15 16 17 17
Chapter 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5	Review of Literature Introduction Treatment and Pretreatment Requirements for Industrial Wastewater Temperature Effect Activated Sludge bulking due to Filamentous Bacteria Activated Sludge Bulking due to non Filamentous Bacteria Effect of Hydraulic Regime or Degree of Mixing in an Aeration Tank on Activated Sludge Filamentous Bulking.	15 15 16 17 17
Chapter 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6	Review of Literature Introduction Treatment and Pretreatment Requirements for Industrial Wastewater Temperature Effect Activated Sludge bulking due to Filamentous Bacteria Activated Sludge Bulking due to non Filamentous Bacteria Effect of Hydraulic Regime or Degree of Mixing in an Aeration Tank on Activated Sludge Filamentous Bulking. Plant Scale Equipment	15 15 16 17 17 18
Chapter 2 2.1 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 2.1.7	Review of Literature Introduction Treatment and Pretreatment Requirements for Industrial Wastewater Temperature Effect Activated Sludge bulking due to Filamentous Bacteria Activated Sludge Bulking due to non Filamentous Bacteria Effect of Hydraulic Regime or Degree of Mixing in an Aeration Tank on Activated Sludge Filamentous Bulking. Plant Scale Equipment Organic Loading Rate	15 15 16 17 17 18 18 20

6

4

2.1.9	Cost Minimization of Activated Sludge Systems	22
2.1.10	Alkalinity & pH changes in the Activated Sludge Process	22
2.1.11	Denitrification in Activated Sludge	23
2.1.12	Bulking Control	24
2.1.13	Operational Control of Sludge Bulking	
2.1.14	Design of a Selector (anoxic Zone)	25
2.1.15	Effect of Recycle and Axial Mixing on Microbial	25
	Selection in Activated Sludge	
2.1.16	Microbial Composition of Activated Sludge	26
2.1.17	Measurement of Biomass & its Activity	27
2.2	Recent Developments	29
2.2.1	Step Feed Activated Sludge	30
2.2.2	Integrated Fixed Film Activated Sludge	30
2.2.3	Activated Sludge with Floating Media	30
2.2.4	Membrane Separation Activated Sludge	31
2.2.5	Computer Controlled Automated Activated Sludge	32
	Process	
2.2.6	Continuous Plug Flow Monitoring	32
2.2.7	Immobilised Bacteria	33
2.2.8	Production of Wahable by products uwa, Sri Lanka.	33
	(Electronic Theses & Dissertations	
	www.lib.mrt.ac.lk	
Chapter 3	Materials and Methods	
<u>.</u>		24
3.1	Introduction	34
3.1.1	Analysis of Effluents	34
3.1.2	Determination of BOD ₅	32
3.1.3	Determination of COD	30
3.1.4	Determination of ISS	37
3.1.5	Determination of MLSS	31
3.1.0	Determination of MLVSS	3/
3.1./	Determination of SVI	38
3.2	Methodology	39
3.2.1	Experimental Techniques	40
3.2.2	Analytical Techniques	40

Experimental Techniques Analytical Techniques 3.2.1 3.2.2

Chapter 4	Calculation and Results	
4.1	Designed Parameters	41
4.2	Estimation of Wastewater Flow Rate to Aeration Tank	41
4.3	Charactaristics of Wastewater as analysed during	42
431	BOD & COD Variation	43
432	pH & Conductivity	44
4.3.3	TSS & Turbidity	45
4.3.4	$NO_3 \& PO_4$	46
4.4	Loading Criteria	47
4.4.1	F/M Ratio	47
4.4.2	Volumetric Loading University of Moratuwa, Sri Lanka.	48
4.5	Process Efficiency (BQD, GOD, ST&S) Dissertations	49
4.6	Process Control	50
4.6.1	Mixed Liquor Suspended Solids	50
4.6.2	Oxygen requirement	51
4.7	Calculation of MLVSS	52
4.8	Calculation of SVI	53
4.9	Nutrient Content	54
4.10	Identification of Bacteria in aeration Tank	54
Chaper 5	Discussion, Conclusion & Recommendation	
5.1	Discussion	55
5.2	Conclusion	62
5.3	Recommendations	63
References		67-70

4

· - ·

s. •

1 .

List of Abbreviations

AS	- Activated Sludge
BOD ₅ ²⁰	- Biochemical Oxygen Demand in five days at 20 ^{0}C
BNR	- Biological Nutrient Removal
COD	- Chemical Oxygen Demand
DO	- Dissolved Oxygen
ETP	- Effluent Treatment Plant
F/M	- Food to Micro-organism Ratio
MLSS	- Mixed Liquor Suspended Solids
MLVSS NEA	- Mixed Liquor Volatile Suspended Solids Sri Lanka Electronic Theses & Dissertations - National Environmental Act. lk
pН	- Hydrogen Ion Concentration
SVI	- Sludge Volume Index
TSS	- Total Suspended Solids
TFM	- Total Fatty Matter
TKN	- Total Kjeldahl Nitrogen
TDS	- Total Dissolved Solids

\$