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Appendix A

Processing videos of multiple cameras

with GPU

In the context of multi-camera vehicle tracking multiple video streams fetched us-

ing a single CPU. When processing those video streams using the GPU it is consid-

ered as a shared medium. The GPU is considered as mutually exclusive to the CPU

threads which are created for fetching the frames. This is archived by applying CPU

lock for each code segment which is to be executed on GPU. One frame is fetched

by a CPU thread and uploaded to the GPU. The Gabor Filter and all the other pro-

cessing is applied on that fetched frame before it is removed from the GPU. Leaving

a frame on the GPU memory and do all the processing and getting the results gives

a advantage of reducing the memory transfer time between the GPU memory and

the main memory of the computer. The code which is executed by each CPU thread

is shown below.

gpuMutex.lock();

cutilSafeCall( cudaMalloc( (void **)&d_DataA_unpad, gabor.DATA_SIZE_ori_f));

cutilSafeCall( cudaMalloc( (void **)&d_DataA, gabor.DATA_SIZE_pad_f) );

cutilSafeCall( cudaMalloc( (void **)&d_padimgresult, gabor.DATA_SIZE_pad_c));

cutilSafeCall( cudaMalloc( (void **)&d_ResultGPU, gabor.DATA_SIZE_ori_c));

//Memory allocation on GPU for calcutate the distance

cutilSafeCall( cudaMalloc( (void **)&d_data_energy, gabor.DATA_SIZE_ori_f));

cutilSafeCall( cudaMalloc( (void **)&d_resultPrevious, gabor.DATA_SIZE_ori_c));

//Memory allocation to find the ROI

cutilSafeCall( cudaMalloc( (void **)&d_minColLocation,sizeof(int)*resizedImageHeight

));
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cutilSafeCall( cudaMalloc( (void **)&d_maxColLocation,sizeof(int)*resizedImageHeight

));

.

.

.

cutilSafeCall(cudaFree(d_imageDataChar));

cutilSafeCall( cudaFree(d_ResultGPU) );

cutilSafeCall( cudaFree(d_padimgresult) );

cutilSafeCall( cudaFree(d_DataA) );

cutilSafeCall( cudaFree(d_DataA_unpad) );

gpuMutex.unlock();



Appendix B

Finding the moving segment closest to

the camera

When the vehicles are tracked with multiple cameras the videos shows multiple ve-

hicles on some occasions. On those situations it is important to separate those ve-

hicles. As a solution when multiple vehicles appear on the capturing range of the

video the vehicle which is closest to the camera is considered. According to the cam-

era positioning each vehicle should appear closest to the camera. The algorithm

checks for an existence of moving segments. The moving segments are searched by

N number of CUDA threads where N is equal to the number of rows on the image.

Each CUDA thread is assigned for each row and searched for the moving segments

using a for loop. The first occurrence and the last occurrence of each row is recorded

in the arrays of d_minColLocation and the d_maxColLocation.

A ROI is applied on the selected vehicle which is moving closest to the camera.

Since the ROI is rectangular shape at least two of the four corners must be calcu-

lated. Those two corners of the ROI are calculated using the two arrays d_minColLocation

and the d_maxColLocation.

__global__ void frontMovingSegmentKernal(float* d_data_energy,

int* d_minColLocation,int* d_maxColLocation,int width,int height)

{

int row = blockIdx.x * blockDim.x + threadIdx.x;

if(row < height)

{

d_minColLocation[row]=-1;

d_maxColLocation[row]=-1;
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for(int j=0;j<width;j++)

{

if(d_data_energy[row*width+j]>1)

{

if(d_minColLocation[row]==-1)

{

d_minColLocation[row]=j;

}

d_maxColLocation[row]=j;

}

}

}

}



Appendix C

Calculation of Phase difference on

GPU

The videos are fetched using the CPU threads and each frame is uploaded to the

GPU frame by frame. The Gabor filter is applied on the adjacent frames of each

video and a per-pixel phase angle is obtained. The per-pixel phase difference is

calculated by the per-pixel phase angles of adjacent frames. This process of calcu-

lating the per-pixel phase difference is done on the GPU by using large number of

GPU threads.

__global__ void gaborDistanceKernal(float* d_phaseShift,

Complexgf* d_resultPrevious,Complexgf* d_resultNow, int width,int height)

{

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

if (row < height && col < width)

{

float tanPrevious = d_resultPrevious[row * width + col].y/d_resultPrevious[row * width

+ col].x;

float tanNow = d_resultNow[row * width + col].y/d_resultNow[row * width + col].x;

d_phaseShift[row * width + col]=atan((tanPrevious-tanNow)/(1+tanPrevious*tanNow));

}

}

The above mentioned code is executed on GPU with assigning one GPU thread

per each pixel. The d_resultPrevious[row * width + col].y/d_resultPrevious[row *
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width + col].x gives the tangent of the phase angle of that pixel of the previous frame

and tanNow = d_resultNow[row * width + col].y/d_resultNow[row * width + col].x

gives the tangent of the phase angle of that pixel of the current frame. atan((tanPrevious-

tanNow)/(1+tanPrevious*tanNow)) gives the phase shift of current frame and the

previous frame of a particular pixel. The phase shift represents the availability of

the motion involved in the two frames.



Appendix D

Multi-Camera matching

The matcher constantly checks for the new images stored to the database. When it

finds a list of new images it loads them one by one. The Speeded up robust features

are extracted on those loaded images with the use of the GPU.

vector<int> matchIdZeroImageIDVector= dbConnect->loadImageIDWithMatchIdZero();

for(int i=0;i<matchIdZeroImageIDVector.size();i++)

{

IplImage* imageNoMatchId = dbConnect->loadImageCameraIPById

(currentCameraIp,secFrom70int,matchIdZeroImageIDVector[i]);

surf.setObject(imageNoMatchId);

surf.extractSURFGPU(0);

perviousCameraIp=getPerviousCameraIp(currentCameraIp);

if((strcmp(perviousCameraIp, "0") != 0))

{

vector<int> imageIDVector= dbConnect->loadImageIDByCameraDuration

(perviousCameraIp,(*secFrom70int-.75*3600),*secFrom70int);

vector<distanceID> distanceIDVector;

for(int j=0;j<imageIDVector.size();j++)

{

IplImage* imageTwo = dbConnect->loadImageById(imageIDVector[j]);

float matchError = surf.matchSURFGPU(imageTwo);

distanceID distanceIDVectorEliment;

distanceIDVectorEliment.x = matchError;

distanceIDVectorEliment.y = imageIDVector[j];

distanceIDVector.push_back( distanceIDVectorEliment);
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}

std::sort(distanceIDVector.begin(), distanceIDVector.end(), sortfunction);

}

}

The camera and the timestamp is also loaded when loading the newly added

image form the database. Based on the camera information of the newly added im-

age it is possible to find the camera information of the camera on which the vehicle

might have appeared. With the use of that information the images which are saved

in approximately 45 minutes earlier to the timestamp of the new image are loaded

for matching. The best match is identified by sorting all the matching distances in

the ascending order and finding the image which gives the minimum matching dis-

tance to the reference image. The best match is considered as previous occurrence

that vehicle on the other camera.


