
References

[1] A. Bevilacqua and S. Vaccari, “Real time detection of stopped vehicles in traffic

scenes,” in Proceedings of the 2007 IEEE Conference on Advanced Video and

Signal Based Surveillance, (London), pp. 266–270, 2007.

[2] J. Pan, Q. Fan, and S. Pankanti, “Robust abandoned object detection using

region-level analysis,” in Image Processing (ICIP), 2011 18th IEEE International

Conference, (Brussels), pp. 3597–3600, 2011.

[3] J. Davis and G. Bradski, “Real-time Motion Template Gradients using Intel

CVLib,” in IEEE ICCV Workshop on Framerate Vision, 1999.

[4] A. Bruhn, J. Weickert, and C. Schnörr, “Lucas/Kanade meets Horn/Schunck:

Combining local and global optic flow methods,” International Journal of Com-

puter Vision, vol. 61, pp. 211–231, 2005.

[5] G. Bradski and A. Kaehler, Learning OpenCV. O’Reilly Media, Inc., 2008.

[6] F. Bartolini, A. Piva, and R. Piva, “Enhancement of the Horn and Schunck optic

flow algorithm by means of median filters,” in Proceedings 13th International

Conference on Digital Signal Processing DSP97, (Santorini), pp. 503–506, 1997.

[7] D. Sun, S. Roth, and M. Black, “Secrets of optical flow estimation and their prin-

ciples,” in Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Confer-

ence on, (San Francisco, CA), pp. 2432 –2439, june 2010.

[8] Q. Miao, G. Wang, C. Shi, X. Lin, and Z. Ruan, “A new framework for on-line

object tracking based on SURF,” Pattern Recognition Letters, vol. 32, pp. 1564–

1571, oct 2011.

[9] D. M. Chu and A. W. M. Smeulders, “Color invariant SURF in discriminative

object tracking,” in Proceedings of the 11th European conference on Trends and

Topics in Computer Vision - Volume Part II, ECCV’10, (Berlin, Heidelberg),

pp. 62–75, Springer-Verlag, 2012.

56

REFERENCES 57

[10] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-Up Robust Features

SURF,” Computer Vision and Image Understanding, vol. 110, no. 3, pp. 346 –

359, 2008.

[11] R. Rios-Cabrera, T. Tuytelaars, and L. V. Gool, “Efficient multi-camera vehicle

detection, tracking, and identification in a tunnel surveillance application,”

Computer Vision and Image Understanding, vol. 116, no. 6, pp. 742 – 753, 2012.

[12] P. Viola and M. Jones, “Rapid object detection using a boosted cascade of sim-

ple features,” in Computer Vision and Pattern Recognition, 2001. CVPR 2001.

Proceedings of the 2001 IEEE Computer Society Conference on, vol. 1, pp. I–511

– I–518 vol.1, 2001.

[13] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of on-line

learning and an application to boosting,” in Proceedings of the Second Euro-

pean Conference on Computational Learning Theory, EuroCOLT ’95, (London,

UK, UK), pp. 23–37, Springer-Verlag, 1995.

[14] M. Dixon, N. Jacobs, and R. Pless, “An efficient system for vehicle tracking

in multi-camera networks,” in Distributed Smart Cameras, 2009. ICDSC 2009.

Third ACM/IEEE International Conference on, (Como), pp. 1–8, 2009.

[15] N. T. Pham, W. Huang, and S. H. Ong, “Probability hypothesis density approach

for multi-camera multi-object tracking,” in Proceedings of the 8th Asian con-

ference on Computer vision - Volume Part I, ACCV’07, (Berlin, Heidelberg),

pp. 875–884, Springer-Verlag, 2007.

[16] O. Javed, K. Shafique, and M. Shah, “Appearance modeling for tracking in mul-

tiple non-overlapping cameras,” in Computer Vision and Pattern Recognition,

2005. CVPR 2005. IEEE Computer Society Conference on, vol. 2, pp. 26–33 vol. 2,

June.

[17] C. Arth, C. Leistner, and H. Bischof, “Object Reacquisition and Tracking in

Large-Scale Smart Camera Networks,” in Distributed Smart Cameras, 2007.

ICDSC ’07. First ACM/IEEE International Conference on, (Vienna), pp. 156–163,

Sept.

[18] C. Loy, T. Xiang, and S. Gong, “Multi-camera activity correlation analysis,” in

Computer Vision and Pattern Recognition, 2009. CVPR 2009. IEEE Conference

on, (Miami, FL), pp. 1988–1995, 2009.

REFERENCES 58

[19] K. Denker and G. Umlauf, “Accurate Real-Time Multi-Camera Stereo-Matching

on the GPU for 3D Reconstruction,” Journal of WSCG, vol. 19, no. 1, pp. 9–16,

2011.

[20] Nvidia, Whitepaper NVIDIA’s Next Generation CUDA Compute Architecture.

Nvidia, 2009.

[21] N. Corporation, NVIDIA CUDA C Programming Guide. Nvidia, 2011.

[22] D. Gabor, “Theory of communication,” Electrical Engineers, Journal of the In-

stitution of, vol. 93, no. 26, pp. 429–457, 1946.

[23] J. G. Daugman, “Two-dimensional spectral analysis of cortical receptive field

profiles,” Vision Research, vol. 20, no. 10, pp. 847 – 856, 1980.

[24] J. G. Daugman, “Uncertainty relation for resolution in space, spatial frequency,

and orientation optimized by two-dimensional visual cortical filters,” Journal

of the Optical Society of America A, vol. 2, pp. 1160–1169, Jul 1985.

[25] T. Sanger, “Stereo disparity computation using Gabor filters,” Biological Cyber-

netics, vol. 59, pp. 405–418, 1988.

[26] E. H. Adelson and J. R. Bergen, “Spatio-temporal energy models for the Percep-

tion of Motion,” Journal of the Optical Society of America, vol. 2, no. 2, pp. 284–

299, 1985.

[27] M. Ouali, D. Ziou, and C. Laurgeau, “Dense disparity estimation using Ga-

bor filters and image derivatives,” in 3-D Digital Imaging and Modeling, 1999.

Proceedings. Second International Conference on, (Ottawa, Ont.), pp. 483–489,

1999.

[28] M. Pharr and R. Fernando, GPU Gems 2: Programming Techniques for

High-Performance Graphics and General-Purpose Computation (Gpu Gems).

Addison-Wesley Professional, 2005.

[29] T. Lengyel, J. Gedarovich, A. Cusano, and T. Peters, “GPU Vision: Accelerating

Computer Vision algorithms with Graphics Processing Units,” 2011.

[30] A. Abramov, T. Kulvicius, F. Wörgötter, and B. Dellen, “Facing the multicore-

challenge,” ch. Real-time image segmentation on a GPU, pp. 131–142, Berlin,

Heidelberg: Springer-Verlag, 2010.

REFERENCES 59

[31] Z. Yang, Y. Zhu, and Y. Pu, “Parallel Image Processing Based on CUDA,” in

Computer Science and Software Engineering, 2008 International Conference on,

vol. 3, (Wuhan, Hubei), pp. 198–201, dec. 2008.

[32] C. Bruyns and B. Feldman, “Image Processing on the GPU: a Canonical Exam-

ple,” 2003.

[33] K. Pulli, A. Baksheev, K. Kornyakov, and V. Eruhimov, “Real-time computer vi-

sion with openCV,” Communications of the ACM, vol. 55, pp. 61–69, June 2012.

[34] N. Cornelis and L. Van Gool, “Fast scale invariant feature detection and match-

ing on programmable graphics hardware,” in Computer Vision and Pattern

Recognition Workshops, 2008. CVPRW ’08. IEEE Computer Society Conference

on, (Anchorage, AK), pp. 1 –8, june 2008.

[35] X. Wang and B. Shi, “GPU implemention of fast Gabor filters,” in Circuits and

Systems (ISCAS), Proceedings of 2010 IEEE International Symposium on, (Paris),

pp. 373 –376, 2010.

[36] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with automatic

algorithm configuration,” in In VISAPP International Conference on Computer

Vision Theory and Applications, pp. 331–340, 2009.

Appendix A

Processing videos of multiple cameras

with GPU

In the context of multi-camera vehicle tracking multiple video streams fetched us-

ing a single CPU. When processing those video streams using the GPU it is consid-

ered as a shared medium. The GPU is considered as mutually exclusive to the CPU

threads which are created for fetching the frames. This is archived by applying CPU

lock for each code segment which is to be executed on GPU. One frame is fetched

by a CPU thread and uploaded to the GPU. The Gabor Filter and all the other pro-

cessing is applied on that fetched frame before it is removed from the GPU. Leaving

a frame on the GPU memory and do all the processing and getting the results gives

a advantage of reducing the memory transfer time between the GPU memory and

the main memory of the computer. The code which is executed by each CPU thread

is shown below.

gpuMutex.lock();

cutilSafeCall(cudaMalloc((void **)&d_DataA_unpad, gabor.DATA_SIZE_ori_f));

cutilSafeCall(cudaMalloc((void **)&d_DataA, gabor.DATA_SIZE_pad_f));

cutilSafeCall(cudaMalloc((void **)&d_padimgresult, gabor.DATA_SIZE_pad_c));

cutilSafeCall(cudaMalloc((void **)&d_ResultGPU, gabor.DATA_SIZE_ori_c));

//Memory allocation on GPU for calcutate the distance

cutilSafeCall(cudaMalloc((void **)&d_data_energy, gabor.DATA_SIZE_ori_f));

cutilSafeCall(cudaMalloc((void **)&d_resultPrevious, gabor.DATA_SIZE_ori_c));

//Memory allocation to find the ROI

cutilSafeCall(cudaMalloc((void **)&d_minColLocation,sizeof(int)*resizedImageHeight

));

60

APPENDIX A. PROCESSING VIDEOS OF MULTIPLE CAMERAS WITH GPU 61

cutilSafeCall(cudaMalloc((void **)&d_maxColLocation,sizeof(int)*resizedImageHeight

));

.

.

.

cutilSafeCall(cudaFree(d_imageDataChar));

cutilSafeCall(cudaFree(d_ResultGPU));

cutilSafeCall(cudaFree(d_padimgresult));

cutilSafeCall(cudaFree(d_DataA));

cutilSafeCall(cudaFree(d_DataA_unpad));

gpuMutex.unlock();

Appendix B

Finding the moving segment closest to

the camera

When the vehicles are tracked with multiple cameras the videos shows multiple ve-

hicles on some occasions. On those situations it is important to separate those ve-

hicles. As a solution when multiple vehicles appear on the capturing range of the

video the vehicle which is closest to the camera is considered. According to the cam-

era positioning each vehicle should appear closest to the camera. The algorithm

checks for an existence of moving segments. The moving segments are searched by

N number of CUDA threads where N is equal to the number of rows on the image.

Each CUDA thread is assigned for each row and searched for the moving segments

using a for loop. The first occurrence and the last occurrence of each row is recorded

in the arrays of d_minColLocation and the d_maxColLocation.

A ROI is applied on the selected vehicle which is moving closest to the camera.

Since the ROI is rectangular shape at least two of the four corners must be calcu-

lated. Those two corners of the ROI are calculated using the two arrays d_minColLocation

and the d_maxColLocation.

__global__ void frontMovingSegmentKernal(float* d_data_energy,

int* d_minColLocation,int* d_maxColLocation,int width,int height)

{

int row = blockIdx.x * blockDim.x + threadIdx.x;

if(row < height)

{

d_minColLocation[row]=-1;

d_maxColLocation[row]=-1;

62

APPENDIX B. FINDING THE MOVING SEGMENT CLOSEST TO THE CAMERA 63

for(int j=0;j<width;j++)

{

if(d_data_energy[row*width+j]>1)

{

if(d_minColLocation[row]==-1)

{

d_minColLocation[row]=j;

}

d_maxColLocation[row]=j;

}

}

}

}

Appendix C

Calculation of Phase difference on

GPU

The videos are fetched using the CPU threads and each frame is uploaded to the

GPU frame by frame. The Gabor filter is applied on the adjacent frames of each

video and a per-pixel phase angle is obtained. The per-pixel phase difference is

calculated by the per-pixel phase angles of adjacent frames. This process of calcu-

lating the per-pixel phase difference is done on the GPU by using large number of

GPU threads.

__global__ void gaborDistanceKernal(float* d_phaseShift,

Complexgf* d_resultPrevious,Complexgf* d_resultNow, int width,int height)

{

int row = blockIdx.y * blockDim.y + threadIdx.y;

int col = blockIdx.x * blockDim.x + threadIdx.x;

if (row < height && col < width)

{

float tanPrevious = d_resultPrevious[row * width + col].y/d_resultPrevious[row * width

+ col].x;

float tanNow = d_resultNow[row * width + col].y/d_resultNow[row * width + col].x;

d_phaseShift[row * width + col]=atan((tanPrevious-tanNow)/(1+tanPrevious*tanNow));

}

}

The above mentioned code is executed on GPU with assigning one GPU thread

per each pixel. The d_resultPrevious[row * width + col].y/d_resultPrevious[row *

64

APPENDIX C. CALCULATION OF PHASE DIFFERENCE ON GPU 65

width + col].x gives the tangent of the phase angle of that pixel of the previous frame

and tanNow = d_resultNow[row * width + col].y/d_resultNow[row * width + col].x

gives the tangent of the phase angle of that pixel of the current frame. atan((tanPrevious-

tanNow)/(1+tanPrevious*tanNow)) gives the phase shift of current frame and the

previous frame of a particular pixel. The phase shift represents the availability of

the motion involved in the two frames.

Appendix D

Multi-Camera matching

The matcher constantly checks for the new images stored to the database. When it

finds a list of new images it loads them one by one. The Speeded up robust features

are extracted on those loaded images with the use of the GPU.

vector<int> matchIdZeroImageIDVector= dbConnect->loadImageIDWithMatchIdZero();

for(int i=0;i<matchIdZeroImageIDVector.size();i++)

{

IplImage* imageNoMatchId = dbConnect->loadImageCameraIPById

(currentCameraIp,secFrom70int,matchIdZeroImageIDVector[i]);

surf.setObject(imageNoMatchId);

surf.extractSURFGPU(0);

perviousCameraIp=getPerviousCameraIp(currentCameraIp);

if((strcmp(perviousCameraIp, "0") != 0))

{

vector<int> imageIDVector= dbConnect->loadImageIDByCameraDuration

(perviousCameraIp,(*secFrom70int-.75*3600),*secFrom70int);

vector<distanceID> distanceIDVector;

for(int j=0;j<imageIDVector.size();j++)

{

IplImage* imageTwo = dbConnect->loadImageById(imageIDVector[j]);

float matchError = surf.matchSURFGPU(imageTwo);

distanceID distanceIDVectorEliment;

distanceIDVectorEliment.x = matchError;

distanceIDVectorEliment.y = imageIDVector[j];

distanceIDVector.push_back(distanceIDVectorEliment);

66

APPENDIX D. MULTI-CAMERA MATCHING 67

}

std::sort(distanceIDVector.begin(), distanceIDVector.end(), sortfunction);

}

}

The camera and the timestamp is also loaded when loading the newly added

image form the database. Based on the camera information of the newly added im-

age it is possible to find the camera information of the camera on which the vehicle

might have appeared. With the use of that information the images which are saved

in approximately 45 minutes earlier to the timestamp of the new image are loaded

for matching. The best match is identified by sorting all the matching distances in

the ascending order and finding the image which gives the minimum matching dis-

tance to the reference image. The best match is considered as previous occurrence

that vehicle on the other camera.

