Modeling Dynamic Brainwave Patterns Using Multi Agent Technology to Effectively Identify Human Emotions

Faculty of Information Technology

University of Moratuwa

January 2014

Modeling Dynamic Brainwave Patterns Using Multi Agent Technology to Effectively Identify Human Emotions

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of MSc in Artificial Intelligence

January 2014

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

M.B.H.M.V. Dayarathne

Signature of Student Date:

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervised by

Prof. Asoka S. Karunananda

Signature of Supervisor Date:

Dedication

... To my loving parents for their endless support,

love and Ucaversigiven Athroughout Lmxa. life and encouragement given to seatch the goals and www.lib.mrt.ac.lk heights I dream of...

Acknowledgment

On the eve of completing a Masters degree in Artificial Intelligence, the research project undoubtedly gave me the opportunity to harvest knowledge along with the experience, and in my opinion it is a challenge offered to any individual.

It is very evident that to select, launch and complete a research project needs considerable guidance, encouragement and assistance. In this context, first and foremost my sincere gratitude goes out to my supervisor Professor. Asoka S. Karunananda for continuous guidance and assistance provided to make this project successful.

Next, I take this opportunity to extend my gratitude to all the lecturers at Faculty of Information Technologyn University of Moratumawaho Strave supported me sharing their time and knowledge throughout the degree program issertations

Further, I extend my gratified to all the staff members of at Faculty of Information Technology, University of Moratuwa for their help and service granted to me and colleagues for completing the degree program without a hassle.

I would also like to take an opportunity to mention all my colleagues who have been a great support to complete this project and the degree program successfully.

Last but not least, I will be failing in my duty if I do not record briefly, the importance of the contribution, guidance and encouragement given by my parents and my sisters.

Finally, my grateful thanks to all the others whose names I have not mentioned due to the limitations of space, who helped me in various ways.

Abstract

Research in interfacing silicon computers (typical computers) with carbon computers (human and animals) has recorded an exponential growth in the modern world. At present, these research ranges from implanting of micro chips inside brain, using brain waves for wireless communication with computers and introducing natural brain cells in silicon computers. Among these trends, use of the brain waves through Electroencephalography signals (EEG) has been a fascinating area of research in the field of computing. In general, EEG Signals are very weak signals with lots of noise unless they are filtered and amplified.

This project envisages the use of EEG signals for interfacing our minds with computers. As the primary objective, it has been investigated the nature of real world scenarios or systems for which we can apply the EEG technology for analysis and understanding. We proceed to use EEG in applicable scenarios and model selected real world scenarios, allowing persons to use our computer-based solution for monitoring and guiding people in similar scenarios. EEG patients detected thring a particular scenario have been modeled by unit. Agent Systems technology, which has a proven potential in modeling real world systems with large number of interconnected entities changing over time.

In a given scenario, EEG signals are detected from multiple channels with varying strengths. In our design, each channel of EEG signals has been assigned with an agent. Our experiments have shown that brain waves generated for scenarios such as typing in the keyboard, invoking a mouse action or watching television while eating are very noisy, hence it's difficult to analyze. This has been the case for activities at which people are not adequately mindful. In contrast, experiment shows that activities requiring considerable mindfulness generate sharp EEG patterns. Listening to a lecture, meditation and solving a mathematical problem are some examples for such scenarios. These experimental results have been used to bench mark EEG pattern for given scenario and analyze situations such as the extent a person is engaged in a task, how soon a person gets into the expected mood, at which points a person is distracted. The current system has been tested by considering scenario such as meditation and making a call. The system can be used by people such as those who are curious about their study skills, novice in meditations and those who wish to know about their mental behavior in certain tasks.

Contents

Chapter 1 Introduction		1
1.1	Prolegomena	1
1.2	Brain Computer Interfacing (BCI)	1
	1.2.1 EEG for sensing Brain Activity	2
1.3	Multi Agent Technology and Complex Systems	2
1.4	Aims & Objectives	2
1.5	A Multi Agent Approach for BCI	3
	1.5.1 Required Resources	5
1.6	Structure of the Thesis	6
Chapter 2 Cur	rrent Trends in Brain Computer Interfacing	7
2.1	University of Moratuwa, Sri Lanka. Introduction Electronic Theses & Dissertations	7
2.2	Brain Wavel Detection C. 1k	7
2.3	Complexity of Brain Wave Detection	7
2.4	Technologies used for Brain Computer Interfacing	8
2.5	Issues in brain wave detection using EEG	9
2.6	Problem in Brief	10
2.7	Summary	11
Chapter 3 Ha	ndling Complexity using Multi Agent Technology	12
3.1	Introduction	12
3.2	Complex & Dynamic Systems	12
3.3	Multi-Agent Systems (MAS) and Complexity	12
3.4	Dynamic Pattern Discovery using MAS	13
3.5	MAS for Emotion Recognition	14

3.6	Mo	odeling Brain's Complexity	15
3.7	Su	mmary	15
Chapter 4 Mult	i Ag	ent Technology for Effective Brain Wave Identification	16
4.1	Int	roduction	16
4.2	Ну	pothesis	16
4.3	Pro	oposed Solution	17
4.4	Inp	outs and Outputs of the System	17
4.5	Pro	ocess	17
4.6	Fea	atures and Potential Users	18
4.7	Su	mmary	19
Chapter 5 An A	gent	Based Design for BCI	20
5.1 5.2	Ag	endersity of Moratuwa, Sri Lanka. enderstantialysteses & Dissertations www.lib.mrt.ac.lk ulti Agent System Architecture	20 20
5.3			20
	.3.1	High-level Architecture	21
5.	.3.2	EEG Source and Pre Processing	22
5.	.3.3	Clustering and Identification of Signal Patterns	22
5.	.3.4	Action Execution	23
5.4	De	tailed Design of the System	23
5.	.4.1	EEG Signal Classification	25
5.	.4.2	Intention Identification and Action Execution	26
5.5	Sig	gnal Transformation & Comparison	27
5.6	Su	mmary	27
Chapter 6 Impl	eme	ntation	28

6.1	Int	troduction	28
6.2	Br	ain Signal Transformation	28
6.3	Ag	gent Framework for MAS	29
6.4	Co	omponents of Proposed Multi-Agent System	29
	6.4.1	Sampling Agent	30
	6.4.2	Record Value Agent	30
	6.4.3	Cluster Agent	30
	6.4.4	The Intention Agent	31
6.5	Fe	atures of the Multi Agent System	31
6.6	Im	plementation of the MAS	32
	6.6.1	The Brain MAS Application	32
	6.6.2	The Clustering System	33
	6.3	University of Moratuwa, Sri Lanka. Action Execution System Electronic Theses & Dissertations	33
	6.6.4	Agent Bebaviourac.lk	34
6.7	Su	mmary	34
Chapter 7	Evaluatio	on	35
7.1	Int	troduction	35
7.2	De	esign of Experiments	35
	7.2.1	Experiments & Types of Participants	35
	7.2.2	Signal Acquisition	36
	7.2.3	Signal Preprocessing	36
7.3	Ex	perimenting Applicability of EEG Signals	37
7.4	Be	ench Marking Events and Actions	38
7.5	Re	esults from Experiments	38
7.6	Su	mmary	39

	Chapter 8 Co	nclusion and Further Work	40
	8.1	Introduction	40
	8.2	Achievements from the Research	40
	8.3	Applicability of Proposed System	43
	8.4	Problems Encountered	43
	8.5	Limitations of the System	44
	8.6	Further work	44
	8.7	Summary	45
	References		46
Appendix A: EEGLAB System			48
	A.1	Sample Screens	48
	Appendix B: Sequende Diagranity of Moratuwa, Sri Lanka.		49
	B .1	Find Cluster Behavior Sequence	49
	B .2	Add to Cluster Behavior Sequence	50
	B.3	Evaluate Cluster Behavior Sequence	51
	B.4	Create Cluster Behavior Sequence	52
 8.3 Applicability of Proposed System 8.4 Problems Encountered 8.5 Limitations of the System 8.6 Further work 8.7 Summary References An sample Screens An sample Screens Appendix B: Screens B.1 Electronic Theses & Dissertations B.1 Add to Cluster Behavior Sequence B.2 Add to Cluster Behavior Sequence B.3 Evaluate Cluster Behavior Sequence	53		
	C.1	High Level Class Structure	53
	C.2	Detailed Class Diagrams	55
		C.2.1 EEG Source Data Acquisition	55
		C.2.2 Agent Behaviours	56
		C.2.3 Classes for Signal Plots and Graphs	58
		C.2.4 Exceptions	59
		C.2.5 Action Execution Classes	60

C.3	BrainMAS Main Application Classes	61
Appendix D: S	Sample Screen Shots Of The System	62
D.1	Brain MAS Application Screens	62
D.2	JADE Platform Screens	65

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Figures

Figure 2.1: Electrode placement in 10-20 system	9
Figure 5.1: High-level Architecture of Proposed System	21
Figure 5.2: Agents in the Multi Agent System	22
Figure 5.3: IEegSamplingAgent Interface	24
Figure 5.4 : Read EEG Source Sequence	25
Figure 5.5 : ClusterAgent.FindIntentionBehvior	25
Figure 5.6 : Behaviors of Record Value Agent	26
Figure 6.1: Cluster Agent creation by BrainMasApplicationAgent	33
Figure 7.1: Signal Acquisition while meditating	37
Figure A.1: EEGLAB GUI Main Interface	48
Figure A.2: EEG Signal Data view	48
Figure B.1: Find Cluster Behavior Sequence	49
Figure B.2: Add to Cluster Behavior Sequence University of Moratuwa, Sri Lanka.	50
Figure B.3: Evaluate Cluster Behavior Sequence Dissertations	51
Figure B.4: Create Cluster Behavior Sequence	52
Figure C.1: High Level Package Structure	53
Figure C.2: Overall Class Diagram	54
Figure C.3: Brain MAS Application classes	55
Figure C.4: Emotiv EDK Library Classes	55
Figure C.5: Emotiv CSV Reader Interface	56
Figure C.6: Behaviors of Cluster Agent and Record Value Agent	56
Figure C.7: Clustering Behavior Classes	57
Figure C.8: RecordValueAgent Behaviors	57
Figure C.9: Raw Signal Plot Classes	58
Figure C.10: Emotiv EEG Source Reading Exceptions	59
Figure C.11: Exception – Invalid EEG Record Exception	59
Figure C.12: Exception – Action Run Exception	59
Figure C.13: IntentionAction Class	60
Figure C.14: External App – Media Player & Note Pad	60

Figure C.15: Intention Action - Play Music & Run Note Pad Actions	61
Figure C.16: Components of Channel Select Window	61
Figure D.1: Brain MAS EEG Source Selection	62
Figure D.2 : EEG Channel Selection Window	62
Figure D.3: Sample Cluster Signal Pattern Plot	63
Figure D.4: EEG Signal Source File Selection	63
Figure D.5 : EEG Source File Confirmation	63
Figure D.6 : EEG Source Signal Plot	64
Figure D.7: Application Log - Source File Read	64
Figure D.8: Application Log - Agent Negotiation	65
Figure D.9: JADE RMA Agent GUI - Platform	65
Figure D.10: Sniffer Agent - Initial State	66
Figure D.11: Sniffer Agent - Record Value Agent Communication	66

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

List of Tables

Table 7.1 : Types of experiments for benchmarking	36
Table 7.2 : Summary of Experimental Results	38

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk