LB/20N/73/00

1

DEVELOPMENT AND EVALUATION OF THE AESTHETICS OF STRUCTURAL FORM

පුස්තකාලය ිනුරවුව විශ්ව විදහලය. ශුි ලංකාව _{මෙ)}රවුව

Ву

Chandana Kulasuriya

BSc.(Hons.)-Civil Eng., CEng.-Civil Eng. BA -Fine Arts & Philosophy with Social Stat

072464

University of Moratuwa

Supervised By

Prof. W.P.S. Dias

Dr. (Mrs.) M.T.P. Hettiarchchi

Th

A Dissertation submitted in partial fulfillment for the award of the Master of Engineering Degree in Structural Engineering Design of the University of Moratuwa, Sri Lanka.

DECLARATION

This dissertation has not been previously presented in whole or part to any University or Institution for a Higher Degree.

Signature of the Candidate

Name of the Candidate

CHANDANA

KULASURIYA

Date

: 20.11.2000

PREFACE

The Master of Engineering Degree in Structural Engineering Design at the University of Moratuwa, Sri Lanka, consists of three major components – Examinations preceded by Lectures, Courseworks and a Research Project. On completion of the Research Project, a Dissertation has to be submitted by the candidate.

As a candidate for the above Masters' Degree, I have carried out a research study on Structural Engineering relating to Aesthetics. This Dissertation is the outcome of my research study.

Chandana Kulasuriya

410, Nawala Road Rajagiriya Sri Lanka.

October 2000

ACKNOWLEDGEMENTS

First of all I wish to thank the University of Moratuwa, Sri Lanka, for providing me the opportunity to read for the Master of Engineering Degree in Structural Engineering Design.

Secondly, I wish to express my gratitude and indebtedness to my Supervisors, Prof. W.P.S. Dias and Dr. (Mrs.) M.T.P. Hettiarachchi, Senior Lecturers in Structural Engineering at the University of Moratuwa, for their scholarly guidance. Without Prof. Dias' inspiration, I would not have embarked on a research study on Structural Engineering relating to Aesthetics. Dr. (Mrs.) Hettiarachchi unhesitatingly provided me the support and encouragement that was needed to complete my research project as envisaged.

Next, my thanks also go to Mr. V.S. Nammuni, Senior Lecturer in Architecture, at the University of Moratuwa, for his comments, suggestions and constructive criticisms.

I am deeply indebted to **Prof. A.P.K. De Zoysa**, Senior Lecturer in Philosophy of Science, at the Open University of Sri Lanka for his interpretations of philosophical concepts which helped me in analysing the philosophical models of aesthetics.

Next, my sincere thanks go to Mr. C. Thenuwara, Senior Lecturer in Fine Arts, at the University of Kelaniya, for his invaluable reflections about aesthetics.

I take this opportunity to express my gratitude to **Dr. B. Weerasinghe**, the Director, Educational Technology Division, and **Dr. (Mrs.) W.A.R. Wijeratne**, Senior Lecturer in Education/Psychology at the Open University of Sri Lanka. Their ideas on psychology were very useful in conducting the psychological experiments (perceptual experiments), the results of which were used to analyse psychological reactions to structures.

A word of thanks is also due to all the respondents who participated in the perceptual experiments.

Finally, I would like to thank my parents, brother, colleagues, and friends for the encouragement, support and for their forbearance – all of which facilitated my Research Study.

ABSTRACT

This study demonstrates that the aesthetic concepts of engineering design do not just arise; but that they are derived from various models of aesthetics. It also presents various Proportioning Systems and their application in Structures, through case studies, notably the use of the Golden Proportion.

The research includes two perceptual experiments. The first experiment was about the perception of rectangular shapes using one hundred respondents. The second experiment was about the perception of simple structures using fifty respondents. The results of these perceptual experiments confirm the fact that respondents' preferences are linked with the various philosophical models.

The research also deals with optimisation of simple structures. Optimisation curves are obtained by varying the dimensions (or proportions) of the structure concerned.

Finally, the dissertation also describes the possibility of making initial design decisions relating to dimensions (or proportions), using plots of optimisation and plots of aesthetic preferences.

CONTENTS

								Page
	PREFACE							i
	ACKNOWLEDGEMENTS .							ii
	ABSTRACT .							iii
	CONTENTS							iv
	LIST OF FIGURES .							vii
1.	INTRODUCTION .				•			1
	1.1 General							2
	1.2 Background of the Problem.							2,
	1.3 Previous Studies					-		3
	1.4 Intended Study					•		4
	1.5 Objectives of the Study				•	•		5
	1.6 Methodologies used in the S	tudy .						5
	Universit	y of Morati	ıwa, Sri L	anka.				
2.	AESTHETICS IN STRUCTUR	RAL DE	SIGN	ions	•	•		7
	2.1 General				•	•		8
	2.2 Nature of Aesthetics			•	•	•		8
	2.3 Models of Aesthetics			•	•	•		9
	2.4 Paradigms of Aesthetic Beau	ıty .		•		•		10
	2.5 Aesthetic Concepts in Struct	ural De	sign		•	•		12
	2.6 Aesthetic Beauty and Propor	rtions .			•	•		14
	2.7 Proportioning Systems			•	•	•		16
	2.8 Application of Proportioning	g Systen	ns in S	tructure	es			25
	2.9 Visual Perception of Proport	tions of	Struct	ures	•	•		28
3.	GOLDEN PROPORTION AND	D ITS A	APPLI	CATIO	ON IN S	STRUC	TURES	30
	3.1 General							31
	3.2 Golden Proportion .				•			31
	3.3 Golden Proportion in Geome	etric Sha	apes		•			32
	3.4 Golden Rectangle and its Pro	operties						33

	3.5 Golden Spiral			•	٠	34
	3.6 Golden Proportion in nature					35
	3.7 Application of Golden Proportion in Structures					38
4.	EVALUATION OF AESTHETICS		•	•		45
	4.1 General					46
	4.2 Perception of Proportions of Geometric Shapes					46
	4.2.1 Methodology					47
	-Experiment 1 : Rectangles		•		•	47
	4.3 Perception of Proportions of Structures .					49
	4.3.1 Methodology		•			50
	-Experiment 1 : Three -span Bridges		•			51
	-Experiment 2 : Parabolic Arched Bridges				•	53
	-Experiment 3 : Circular Arched Bridges				•	54
	-Experiment 4 : Parallel Chorded Trusses					56
5.	OPTIMISATION OF SIMPLE STRUCTURES				•	61
	3.1 General . www.lib.mrt.ac.lk	•	•	•	٠	62
	5.2 Optimisation	•	•	•	•	62
	-Structure 1: Three Span Continuous Beam	•	•	•	•	62
	-Structure 2: Two-pinned Parabolic Arch	٠	•	•	•	65
	-Structure 3: Two-pinned Circular Arch.	•	•	•	•	67
	-Structure 4 : Parallel Chorded Trusse .	•	•	•	•	69
6.	DISCUSSION	•	•	•	•	74
7.	CONCLUSIONS			•	•	82
8.	SUGGESTIONS FOR FUTURE STUDY .	•		•	•	87
	REFERENCES				•	90

APPENDICES	•	•	•	94
Appendix 1: Fundamental Mathematical Progressions				95
Appendix 2: Nomenclature of Proportions using Musical Theorem	ory			97
Appendix 3: Questionnaire 1: Perception of Proportions	•			100
Appendix 4: Perception of Rectangles			•	101
Appendix 5 : Questionnaire 2: Perception of Structures				102
Appendix 6: Perception of Three-span Bridges .				103
Appendix 7: Perception of Parabolic-arched Bridges .				104
Appendix 8: Perception of Circular-arched Bridges .				105
Appendix 9: Perception of Parallel-chorded Trusses .				106
Appendix 10: Design Quality Assessment (DQA) Table				107
Appendix 11: Specimen Calculations –Three-span Beam				108
Appendix 12: Specimen Calculations – Parabolic Arch			•	110
Appendix 13: Specimen Calculations – Circular Arch		•		113
Appendix 14: Specimen Calculations – Parallel-chorded Truss.				116

LIST OF FIGURES

			Page
Fig. 1 - Aesthetic Concepts and their application in Structures		•	13
Fig. 2 - Incommensurable ratios of simple geometric shapes	•	-	15
Fig. 3 - Plato's two number series, laid out as a Lambda (λ)			18
Fig. 4 - The completed Platonic Lambda Series			18
Fig. 5 - Platonic Means			19
Fig. 6 - Derivation of Sacred Square Roots			20
Fig. 7 - Albertie's Subtractive System of proportion .			22
Fig. 8 - Palladio's favoured proportions			22
Fig. 9 - Le Modular Proportioning System			24
Fig. 10 - Geometric Decomposition			26
Fig. 11 - Villard Diagram and its Application in Bern Cathedra	1.		27
Fig. 12 - Application of the Golden Ratio in Linear Direction			28
Fig. 13 - Notre – Dame façade			29
Fig. 14 - Golden Proportion in Pentagon			32
Fig. 15 - Golden Proportion in Pentagram			32
Fig. 16 - Golden Rectangle			33
Fig. 17 - Gradation of Squares and Golden Rectangles .			33
Fig. 18 - Golden Spiral			34
Fig. 19 - Intersection of curve and radii		•	34
Fig. 20 - Golden Proportions of the Human Body	•	•	35
Fig. 21 – Golden Spiral in Nautilus Shell			36
Fig. 22 - Golden Spiral in Nature			37
Fig. 23 - Golden Proportions of Parthenon, Greece			38
Fig. 24 - Golden Proportions of Cistercian Abbey, Fontenay			39
Fig. 25 - Golden Proportions of Yakushiji Temple Pagoda, Jap	an .		40
Fig. 26 - Golden Proportions of Redheugh bridge			40
Fig. 27 - Ting Kau Bridge			41
Fig. 28 - Golden Proportions of the Ting Kau Bridge composit	ion .		41
Fig. 29 - Twin-towered Vasco da Gama bridges			42
Fig. 30 - Golden Proportions of the Pylon of the Vasco da Gam	na Bridge		42

Fig. 3	31 - Tsing Ma Suspension Bridge		•	43
Fig. 3	32 - Proportions of the Tsing Ma Towers			44
Fig. 3	33 - The Golden Proportioned double-deck section of the Tsing	g Ma B	ridge	44
Fig. 3	34 - Preferences when shorter dimension is vertical .			48
Fig. 3	35 - Preferences when shorter dimension is horizontal.			48
Fig. 3	36 - Sample drawing of a Three-span Bridge			51
Fig. 3	37 - Respondents' Preferences for the Three-span Bridge			52
Fig. 3	88 - Sample drawing of the Parabolic-Arched Bridge .			53
Fig. 3	9 - Respondents' Preferences for the Parabolic Arched Bridge	2		54
Fig. 4	0 - Sample drawing of the Circular-Arched Bridge .			55
Fig. 4	1 - Respondents' Preferences for the Circular arched Bridge			55
Fig. 4	2 - Five types of Parallel-chorded Trusses considered.			56
Fig. 4	3 - Sample drawing of a Truss			57
Fig. 4	4 - Preferences -trusses grouped according to span to height	ratio		58
Fig. 4	5 - Preferences -trusses grouped according to number of segments	nents		59
Fig. 4	6 - Bending Moments in the Three-span Beam.			63
Fig. 4	7 - Lengths over which sagging and hogging moments are eff	ective		64
Fig. 4	8 - Optimisation Curve for Three-span Beam			65
Fig. 4	9 - Axial Force Envelope of a Two-pinned Parabolic Arch			66
Fig. 5	0 - Optimisation Curve for Two-pinned Parabolic Arch	•		67
Fig. 5	1 - Axial Force Envelope of a Two-pinned Circular Arch			68
Fig. 5	2 - Optimisation Curve for Two-pinned Circular Arch	•		69
Fig. 5	3 - Five Types of Parallel-chorded Trusses considered			70
Fig. 5	4 - Optimisation Curves -trusses grouped according to span to	height	ratio	72
Fig. 5	5 - Optimisation Curves -trusses grouped according to numbe	r of seg	ments	72