MODELING OF EFFECTIVE MAINTENANCE FUNCTION FOR MANUFACTURING EXCELLENCE PROGRAMME: A CASE OF MANUFACTURING INDUSTRY IN SRI LANKA

Degree of Master of Science

Department of Mathematics

University of Moratuwa Sri Lanka

February 2013

MODELING OF EFFECTIVE MAINTENANCE FUNCTION FOR MANUFACTURING EXCELLENCE PROGRAMME: A CASE OF MANUFACTURING INDUSTRY

IN SRI LANKA

M.G.S.Dilanthi

(08/10300)

Dissertation submitted in partial fulfillment of the requirements for the degree Master of Science in Operational Research

Department of Mathematics

University of Moratuwa Sri Lanka

February 2013

DECLARATION OF THE CANDIDATE

"I declare that this is my own work and this thesis/dissertation does not incorporate without acknowledgement any material previously submitted for a Degree or Diploma in any University or other institute of higher learning and to the best of my knowledge and belief it does not contain any material previously published or written by another person except where the acknowledgement is made in the text"

Signature:	Date:

DECLARATION OF THE SUPERVISOR

"I have supervised and accepted this thesis for t	the submission of the degree"
Signature of the Supervisor:	Date:
M.M.D.R. Deeghawature	
Senior Lecturer	
Department of Industrial Management	
Faculty of Applied Sciences	
Wayamba University of Sri Lanka	

DEDICATION

This thesis is dedicated to my beloved parents and my loving husband who never failed to aid me with the financial and moral support when required instilling the importance of hard work and higher studies and teaching me that the best kind of knowledge to have is that which is learned for its own sake.

ACKNOWLEDGEMENTS

It would not have been a successful upshot if the absence is there of the healthy guidance and some of caring individuals who genuinely added their valuable support even by a word till seen the finishing point of this research.

Firstly the utmost gratitude would be offered to Dr. T.S.G. Peiris, the coordinator of MSc / PG Diploma in Operational Research, Department of Mathematics, Faculty of Engineering, University of Moratuwa facilitating us in every possible ways to continue the research.

For the unselfish and unfailing guidance with the sincerity and steadfast encouragement I should highly admire Mr. M.M.D.R. Deegahawature, the department of Industrial Management, Faculty of Applied Sciences, Wayamba University of Sri Lanka, being my supervisor. The greater dedication of him on carrying out this much of successful wrapping up is really unforgettable.

There would not be a continuation of this research further unless the morale support of my university batchmate Mr. Naveen Atapattu who provided me required information and shared valuable insights in the relevance of the study despite of his valuable time and official duty.

It is my duty to offer the gratefulness to Dr. K.D.D.N. Dissanayake, the Head of department of Industrial Management, Faculty of Applied Sciences, Wayamba University of Sri Lanka for encouraging me and giving an infrequent opportunity to present the proposal of this research infront of a panel of senior research fellows at Wayamba University Research Symposium in order to enrich my research objectives and methodologies through further well experienced supervision.

The support of academic staff of the department of Industrial Management, Faculty of Applied Sciences, Wayamba University of Sri Lanka would awake my mind here by sharing their research experience and productive ideas to carry my objectives fruitful.

Last but not the least, I must pay my thousands gratitude to my family and beloved husband, for giving me the strength in hurdling all the obstacles in the completion of this research work.

ABSTRACT

The performance greatly affects the survival and prolonger life time of the manufacturing industry of Sri Lanka. In measuring the corresponding level of performance, the term "productivity" becomes vital. It entails updating the productivity improvement techniques in accordance with the technological advancements of the industry. Manufacturing Excellence programme has become the most updated version of productivity improvement technique. It enhances all the processes, people, goods and information within the work floor providing a good performance in achieving of a higher level of productivity. Since maintenance also has a strategic dimension, its performance measurement system should be linked to the espoused strategy of the function in order to get the maximum impact. It has been clearly recognized the presence of failures in former attempts of implementing productivity techniques due to the unidentified proper maintenance function. This research therefore attempts to develop a suitable maintenance function which describes the relationship between the performance of productivity improvement and different indicators of maintenance practices. Based on this conceptual framework built on successful review of literature related to the area concerned, it was decided to include six performance indicators of the maintenance process into the model. The required data to develop the model was acquired through a structured questionnaire. The model identified that the two significant performance indicators that influence the performance of productivity improvement technique are the extent of training and equipment failure responsiveness. The model was developed through step-wise regression procedure and it was confirmed by both forward selection and backward elimination procedure. As model was developed based on information from one organization it is suggested to develop similar models for other organizations as well.

KEY WORDS: Productivity Improvement, Manufacturing Excellence Programme, Maintenance Function, Maintenance Practices.

TABLE OF CONTENT

				Page No.
Declaration	of the C	andidate		i
Declaration	of the S	uperviso	r	ii
Dedication				iii
Acknowledg	gements			iv
Abstract				v
Table of Cor	ntent			vi
List of Figur	es			viii
List of Table	es			ix
List of Anne	xure			X
Chapter 1:	Intro	duction		1
	1.1	Backg	round	1
	1.2	Appro	ach of Research Problem	2
	1.3		ale of Research Study	5
	1.4		icance of the Research	5
	1.5	Resear	rch Objectives	6
	1.6	Repor	t Structure	6
Chapter 2:	Liter	ature Rev	view	8
	2.1	Introd	uction	8
	2.2	Literat	ture Review	8
		2.2.1	Research Approach	8
		2.2.2	Manufacturing Excellence Programme	11
		2.2.3	Maintenance Function and its Response	13
	2.3	Chapte	er Summary	27
Chapter 3:	Meth	ethodology		28
	3.1	Introd	uction	28
	3.2	Resear	rch Strategy	28
	3.3	Resear	rch Design	30
	3.4	Resear	rch Process	34
		3.4.1	Research Plan	34
		3.4.2	Literature Review	35

		3.4.3	Selecting Participants	35
		3.4.4	Sampling Procedure	36
		3.4.5	Research Instrumentation	36
		3.4.6	Procedure	38
		3.4.7	Data Processing and Analysis	38
	3.5	Resea	rch Quality	40
	3.6	Ethica	al Considerations	42
	3.7	Chapt	er Summary	42
Chapter 4:	Resu	Results and Discussion		43
	4.1	Introd	luction	43
	4.2	Part I:	Presentation of Data	43
	4.3	Part I	I: Analysis of Data	51
		4.3.1	Reliability of Data	51
		4.3.2	Personnel Satisfaction on Manufacturing	
			Excellence Programme	51
		4.3.3	Descriptive Analysis	56
		4.3.4	Correlation Analysis Regression Analysis	60 62
		4.3.6	Residual Analysis of Effective Maintenance	Function
			•	71
		4.3.7	Forward Selection Analysis	76
		4.3.8	Backward Elimination Analysis	76
	4.4	Chapt	er Summary	78
Chapter 5:	Conc	Conclusions and Recommendations		79
	5.1	Introd	luction	79
	5.2	Resea	rch Findings and Conclusions	79
	5.3	Limita	ations of the Current Study	80
	5.4	Recor	nmendations to the Manufacturing Industry	81
	5.5	Sugge	estions for Future Work	82
Reference L	ist			83

LIST OF FIGURES

	Pag	e No
Figure 3.1	Research Framework	32
Figure 4.1	Participation of Different Levels of Hierarchy (in Percentage)	44
Figure 4.2	Percentage Representation of Sample Age Limits in Years	45
Figure 4.3	Percentage Representation of Working Experience in Years	46
Figure 4.4	Percentage of Personnel Satisfaction on Manufacturing	
	Excellence Programme	47
Figure 4.5	Average Responses for Performance of Manufacturing	
	Excellence Programme Given in Likert Scale	47
Figure 4.6	Average Responses for Communication and Coordination	
	Given in Likert Scale	48
Figure 4.7	Average Responses for Leadership Given in Likert Scale	48
Figure 4.8	Average Responses for Extent of Training Given in Likert Scale	49
Figure 4.9	Average Responses for Team Working Given in Likert Scale	49
Figure 4.10	Average Responses for Employee Involvement Given in	
	Likert Scale	50
Figure 4.11	Average Responses for Equipment Failure Responsiveness	
	Given in Likert Scale	50
Figure 4.12	Personnel Satisfaction in Hierarchical Order (in Percentage)	52
Figure 4.13	Personnel Satisfaction with Age Groups (in Percentage)	53
Figure 4.14	Personnel Satisfaction on Work Experience (in Percentage)	54
Figure 4.15	Personnel Dissatisfaction in Hierarchical Order (in Percentage)	55
Figure 4.16	Personnel Dissatisfaction with Age Group (in Percentage)	55
Figure 4.17	Personnel Dissatisfaction on Work Experience (in Percentage)	56
Figure 4.18	Interval Plot for Performance of Manufacturing Excellence	
	Programme	56
Figure 4.19	Mean, Maximum and Minimum Values of corresponding Responses	57
Figure 4.20	Bivariate Scatterplots for the Variables	63
Figure 4.21	Results gained for Normality Test- Anderson-Darling Test	64
Figure 4.22	Histogram of the Residuals	72
Figure 4.23	Normal Probability Plot of Residuals	73

Figure	4.24 Plot of Residuals versus Fitted Values	74
Figure	4.25 Plot of Residuals versus Order of the Data	74
LIST	OF TABLES	
	Pa	ige No.
2.1	Selected Key Performance Indicators (KPI)	15
3.1	Operationalization of Variables	31
3.2	Likert Scale Interpretation with Relevant Weights	37
4.1	Reliability Statistics	51
4.2	Mean and Median Values for Selected Maintenance Practices	58
4.3	Summarized Measures of Variability	59
4.4	Correlation Matrix of Variables	61
4.5	Test Results of the Maintenance Practices for Normality Test with	
	Anderson-Darling Test	65
4.6	Stepwise Regression Analysis	66
4.7	Model Selection Statistics	66
4.8	Best Alternatives Suggested in Stepwise Regression	68
4.9	Analyzing of variance screens these a Dissertations	70
4.10	New Estimated Coefficients with Corresponding p-Values for Predictor	s 70
4.11	Unusual Observations	71
4.12	Analysis of Variance with Lack of Fit Test	75
4.13	Backward Elimination Analysis	77
4.14	Model Selection Statistics	77

LIST OF ANNEXURE

Annexure	Description Pag	Page No.	
Annexure - A	Questionnaire on Manufacturing Excellence Programme	102	
Annexure – B	Summary of Responses	105	

