Monocular Vision Based Agents for Navigation in Stochastic Environments

P.A.P.R Athukorala

109151J

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

> Faculty of Information Technology University of Moratuwa

> > October 2012

Monocular Vision Based Agents for Navigation in Stochastic Environments

P.A.P.R Athukorala

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfilment of the requirements of the Degree of MSc in Artificial Intelligence

October 2012

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

P.A.P.R Athukorala Name of Student

Signature of Student Date:

Prof. Asoka S.Karunananda Name of Supervisor(s)

Signature of Supervisor(s) Date:

Dedication

To my beloved parents, for their kindness, love, guidence and support.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgements

I would like to express my sincere gratitude to my supervisor Prof. Asoka S. Karunanda, for his kind guidance, dedication and support given throughout the entire Masters Degree program. Also I wish to extend my warmest thanks to all those who have helped me with my work including my colleagues at the department of Information Technology, University of Moratuwa.

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Abstract

Depth perceiving computer vision algorithms which are based on multiple view geometry are computationally expensive. As such, it is not practical to implement such systems in low end computing devices such as mobile phones. Nevertheless, for certain applications, monocular computer vision based algorithms which are capable of generating depth approximations are adequate and can be implemented on low end computing devices. In this context, we are still faced with the problem that monocular vision is very much affected by environment conditions such as light intensity, noise, density of obstacles, depth, etc. In case of stochastic environments, these aspects are even more crucial. Each algorithm's accuracy depends on its internal constraints and environment conditions which the algorithm is capable of handling. For that matter, it is required to execute multiple monocular vision algorithms in a system and to select the result from the most appropriate algorithm according to the current environment condition. As such modeling of monocular vision based algorithms for navigation in stochastic environments into low-end smart computing devices turns out to be a research challenge. University of Moratuwa, Sri Lanka.

Our research to address the above issue spostblites chattibe. Agent technology can model such environment scheduler studions. By definition, an agent is a small program that autonomously activates when necessary, performs a task and terminates on the completion of the task. This amounts to optimize the resource usage, which is a crucial factor for low-end computing devices. On the other hand Agents can negotiate and deliver high quality solutions which go beyond the individual agent's capacity to solve a problem.

In this sense, we have conducted a project to devise a Multi Agent Based solution for modeling a monocular vision based navigation system pertaining to significantly different environments. Each agent in the system is assigned with a unique monocular depth perception algorithm, which is appropriate only for a certain environment. When a particular environment is not in favor for a certain agent, the agent does not execute its assigned algorithm, by allowing activation of another Agent who can perform better in the particular environment. This enables effective utilization of computing resource by the Agents and returning more realistic results in a stochastic environment. The solution includes five agents, namely, *hardware agent, message space agent, appearance variation based agent, optical flow based agent and floor*

detection based agent. The hardware agent initiates the camera of the device and inputs an image to the system for the use by appearance variation based agent, floor detection based agent and optical flow based agent. The message space agent displays the communication and enables negotiations among agents. Appearance variation based agent, Floor detection based agent and optical flow based agent have small codes to represent unique monocular vision based algorithms which are capable of generating depth approximations to various obstacles.

The system is implemented on an Android based mobile phone having a 1GHz arm cortex processor and a 329 MB of RAM. It was evaluated using a sample environment, where it was able to select the most appropriate algorithm automatically according to the changing environment conditions while minimizing the resource consumption. Given a sample scenario having three different environment settings, the system was able to gain a 66.6% improvement of detecting obstacles than using a single monocular vision algorithm. The CPU load was reduced by 10% when the depth perception algorithms were implemented as environment sensitive agents, in contrast to running them as separate algorithms in different threads.

As per the evaluation results, it is concluded that the multi agent technology can be used to implement monocular depth perception algorithms as environment sensitive agents and it results in improved depth predictions and better utilization of computing resources.

Contents

Chapter 1 - Introduction	Page
1.1. Introduction	01
	01
6	
	02
1.4. Objectives	02
1.5. Resource requirements	03
1.6. Summary	03
Chapter 2 – Related work in monocular vision based depth perceptio	n
2.1. Introduction	04
2.2. Machine learning based approaches	04
2.3. Approaches based on imaging and mechanical properties	05
2.4. Summary	08
Chapter 3 - Technology adapted	
5.1. Electronic Theses & Dissertations	10
3.2. Wulti agent systems technology	10
3.2.1. Agent communication	11
3.2.2. Reactive and proactive agents	11
3.2.3. Ontology	11
3.2.4. Agent lifecycle	11
3.3. Digital image processing	12
3.4. Summary	12
Chapter 4 - Monocular vision based agents for navigation in stochast	ic
environments	IC .
4.1. Introduction	13
4.2. Proposed solution	13
4.2.1. Input	13
4.2.1. Input 4.2.2. Output	13
4.2.3. Process	13
4.2.3. Process 4.2.4. Users	13 14
4.2.5. Features	14

4.3.	Functional specification	14
4.4.	Summary	14

Chapter 5 - Design

5.1.	Introduction	15
5.2.	Design of the Multi agent framework	15
5.3.	High level design of the system	16
	5.3.1. Hardware agent	16
	5.3.2. Optical flow based agent	16
	5.3.3. Appearance variation based agent	17
	5.3.4. Floor detection based agent	18
	5.3.5. Embedding environment awareness	18
	5.3.6. Message space agent	19
5.4.	Summary	20

Chapter 6 - Implementation

6.1. Introduction	wa Sri Lanka 21
6.2. Complementation of the agent fram	ework 21
6.3. Implementation of agents 1k	21
6.3.1. Hardware agent	21
6.3.2. Optical flow based agent	22
6.3.3. Appearance variation bas	ed agent 22
6.3.4. Floor detection based age	nt 22
6.3.5. Message space agent	23
6.4. Summary	23

Chapter 7 – Evaluation

7.1.	Introduction	24
7.2.	Evaluating reactivity to environment	24
7.3.	Evaluating improved depth perception capabilities	26
7.4.	Evaluating optimized resource utilization	28
7.5.	Evaluating obstacle avoidance for guiding a blind person	29
7.6.	Summary	30

Chapter 8 – Conclusion and further work

8.1.	Introduction	31
8.2.	Conclusion	31
	8.2.1 Reactivity to environment	31
	8.2.2 Improved depth perception capabilities	31
	8.2.3 Optimized resource utilization	31
	8.2.4 Obstacle avoidance for guiding a blind person	32
8.3.	Problems Encountered	32
8.4	Limitations	32
8.5	Further Works	33
8.6	Summary	33
References		35
Appendix A	- Optical Flow estimation	37
A.1	Introduction	37
A.2	Lucas-Kanadesnethod for Optical/EloSrestimation	37
A non and in R	Electronic Theses & Dissertations	40
B.1	Introduction	40
		40
B.2	Calculating Shannon's entropy	40
Appendix C	- Emulating Optical Flow	41
C.1	Introduction	41
C.2	Implementation of the optical Flow agent	41
Appendix D	- Sample obstacle detection scenarios	42
D.1	Introduction	42
D.2	Sample scenarios	42

List of Figures

	Page
Figure 3.1: Request-resource-message-ontology architecture for MAS	10
Figure 5.1: Agent interface provided by the framework	15
Figure 5.2: High level architecture of the system	16
Figure 5.3: Design of Optical flow calculation	17
Figure 5.4: Design of the appearance variation calculation	18
Figure 7.1: Execution rates of agents when obstacles are away from camera	25
Figure 7.2: Execution rates of agents when camera is getting closer to an obsta	cle 25
Figure 7.3: Execution rates of agents when the camera is nearby to the obstacle	e 26
Figure 7.4: Execution rates of agents when the camera is pointed towards a wa	ll 27
Figure 7.5: Execution rates of agents when the camera is pointed towards a	
colourful obstacle	27
Figure 7.6: Obstacle on the floor is detected by the floor detection based agent	28
Figure 7.7: Memory and processor statistics when agents executing at full spee	ed 29
Figure 7.8: Memory and processor statistics when the agents are sensitive to the	ie
environment	29
Figure C.1: Implementation of the Optical Flow agent	41
Figure D.1: Moving an obstacle (a human hand) towards the camera	42
Figure D.2: Moving the camera towards an obstacle	42

List of Tables

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk Page

19