Multi-agent based Crowd Model to Simulate Emergency Situations

B. W. S. Perera

Faculty of Information Technology

University of Moratuwa

October 2012

Multi-agent based Crowd Model to Simulate Emergency Situations

B. W. S. Perera

Dissertation submitted to the Faculty of Information Technology, University of Moratuwa, Sri Lanka for the partial fulfillment of the requirements of the Degree of MSc in Artificial Intelligence

October 2012

Declaration

I declare that this dissertation does not incorporate, without acknowledgment, any material previously submitted for a Degree or a Diploma in any University and to the best of my knowledge and belief, it does not contain any material previously published or written by another person or myself except where due reference is made in the text. I also hereby give consent for my dissertation, if accepted, to be made available for photocopying and for interlibrary loans, and for the title and summary to be made available to outside organization.

B.W.S. Perera

Name of Student

Signature of Student

Date: University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Supervised by

Prof. Asoka S. Karunananda

Name of Supervisor(s)

Signature of Supervisor(s)

Date:

Dedication

To my parents . . .

With love and gratitude

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk

Acknowledgements

I sincerely thank Prof. Asoka S. Karunananda for supervising me during this project and guiding me throughout my MSc degree to understand what is meant by doing a research project by following a well-defined research process.

I take this opportunity to extend my heartfelt gratitude to Dr. Prasad Wimalaratne for his invaluable guidance, encouragement and heartiest support given to me throughout this project to drive towards its success.

Not to forget that I have cherished an invaluable friendship and learned much more from all my MSc batch mates. Without those heartiest moments of friendship, invaluable project ideas during discussions and never-ending encouragements; this research project would not have been this much interesting.

I am grateful to all my lecturers at University of Moratuwa for sharing their invaluable knowledge, experience and providing advises to improve the quality of my life and all lives of all my MSc batch mates.

Dedicating this Dissertation alone is not enough to be thankful to my parents for the unconditional love and support they have given me, as pecially passing the difficult times of my life. I hope that Edic something to make them be proud of myself.

Last but not least, Woffer in sincere gratitude to all those who supported me in any respect for the completion of my MSc project.

B.W. S. Perera

October, 2012

Abstract

Crowd simulation is listed under many practical applications in computer industry; such as safety modelling, pre-planning building architectures, urban modeling and entertainment software. Most of these current simulations are created by extending deterministic models such as particle systems, cellular automata and fluid motion. However, extending a crowd simulation model to support an emergency situation still remains as a key challenge. The reason lies behind the difficulty of simulating the unpredictable nature of crowd behaviour during panic; since a computer algorithm approaches a solution by parameterizing predictability within a problem.

It is evident from literature that multi-agent technology has proven success in modeling complex systems interacting among many entities that are distributed and operated under lot of uncertainty. Therefore it is postulated that multi-agent systems technology can model the uncertainty of a scenario such as crowd behaviour raised during a panic

situation.

University of Moratuwa, Sri Lanka.Electronic Theses & Dissertations

The proposed solution provides an agent-based framework to simulate crowd behaviour during an emergency situation. By considering evacuation of a crowd from a building during fire as a sample input scenario; each individual is modeled as an agent associated with a local ontology. The local ontology of an agent is a collection of simple rules, representing the knowledge known to each individual; prior to occuring the emergency. The knowledge embedded within these rules is exchanged (i.e. shared) among individuals as they communicate with each other during the emergency. As a result unpredictable global behaviour patterns emerge within the crowd; which is similar to observations of a real crowd facing a real emergency along with statistics recorded per each simulation session, indicating evacuation related information for each individual. The solution is evaluated by implementing a prototype and comparing the statistics recorded from the prototype with statistics recorded from real world crowd behaviour during panic. Hence it is concluded that a multi-agent based knowledge sharing approach is well suited for modeling a crowd in panic.

Contents

	Page
Chapter 1 Introduction	1
1.1 Introduction	1
1.2 Background and Motivation	1
1.3 Problem in Brief	3
1.4 Aim and Objectives	3
1.5 Proposed Solution	4
1.6 Thesis Outline	4
1.7 Summary	5
Chapter 2 Modeling Crowd Behaviour, the State of the Art	6
2.1 Introduction	6
2.2 Studies on Crowd Behaviour during Panic: Significant Outcomes	6
2.2.1 Pedestrian Behavibu Maring praic Sri Lanka.	6
Sciartomic refrances dring strations	7
2.2.3 Temporal Nature of Exit Paths during an Emergency	8
2.2.4 Asymmetrical Clustering of a Crowd during Panic	9
2.3 Crowd Simulation Models	9
2.3.1 Musse and Thalman Model: Modeling a Crowd based on S	milar
Interests of Individuals	9
2.3.2 Foudil's Crowd Model: Crowd Modeling between Normal	and Panic
Situations	10
2.3.3 CrowdSim Simulator: Modeling a Crowd as a Collection of	Particles
	12
2.3.4 Nishinari et. al. Crowd Model: Grid-based approach to Cro	wd Model
	13
2.3.5 Existing Multi-agent based Approaches to Simulate Crowd	
Behaviour	14
2.3.6 Multi Agent-based Individuals with different Rule Types; I	nstinct,
Experience and Social Norms	15

2.4 Key Challenge in extending a Crowd Simulations to support Panic Beha	viour
	17
2.5 Summary	19
Chapter 3 Emerging Crowd Behaviour in Panic with Multi-Agent Technology	20
3.1 Introduction	20
3.2 Multi-agent Technology for modeling a Crowd under Panic	20

Chapter 4 Multi-agent based Approach to Model Crowd Behaviour for Emergency Situations 23

22

3.3 Summary

for

10115		45
4.1 Introd	duction	23
4.2 Нуро	thesis	23
4.3 Input		23
4.4 Proce	²⁵⁵ University of Moratuwa, Sri Lanka.	24
4.5 Outp	Electronic Theses & Dissertations	25
4.6 Users		25
4.7 Featu	ires	25
4.8 Sumr	nary	26

Chapter 5 Design for a Multi-agent based Crowd Simulation Model with support

Crowd Behaviour during Panic	27
5.1 Introduction	27
5.2 High Level Design of the System	27
5.3 Environment Setup Agent	29
5.4 Fire Agent	30
5.5 Individual Agent	30
5.5.1 Anatomy of a Rule	31
5.5.2 Rule Selection	32
5.5.3 Neighbour's Rule Acceptance	32
5.5.4 Sharing Ontologies between Individual Agents	33

5.5.5 Termination of an Individual Agent	33
5.6 Monitoring Agent	33
5.7 Summary	34
Chapter 6 Implementation	35
6.1 Introduction	35
6.2 Overall Implementation Platform	35
6.3 Implementing Communication between Agents within Message Space	36
6.4 Implementation of Environment Setup Agent	37
6.5 Implementation of Common Ontology	38
6.6 Implementation of Fire Agent	38
6.7 Implementing Rules used by Individual Agents	39
6.8 Implementation of Individual Agent	40
6.9 Implementation of Monitoring Agent	43
6.10 Summary University of Moratuwa, Sri Lanka.	44
Chapter 7 Evaluationwww.lib.mrt.ac.lk	45
7.1 Introduction	45
7.2 Evaluation Strategy	45
7.3 Experimental Setup	45
7.4 Crowd Behaviour during Fire – Real World Observations	46
7.5 Experiment 1: Example Scenario with 10 Individuals	48
7.6 Experiment 2: Example Scenario with 30 Individuals	52
7.7 Summary	54
Chapter 8 Conclusion and Further Work	55
8.1 Introduction	55
8.2 Conclusion	55
8.3 Achievement of Objectives	57
8.4 Problems Encountered	57
8.5 Further Work	58

8.6	Summary
-----	---------

References

Appendix A: Crowd Simulator; Input and Output Examples	63
A.1 Input Scenario Configuration	63
A.2 Sample Output of a Log file recorded during a Single Simulation Session	64
Appendix B: Evaluation, Experiment 1 (Scenario with 10 Individuals)	66
B.1 Input Scenario File	66
B.2 Example Screen Shot	68
B.3 Cumulative Statistics derived based on Log file – 1st Simulation Session	69
B.4 Cumulative Statistics derived based on Log file – 2nd Simulation Session	69
Appendix C: Evaluation, Experiment 2 (Scenario with 30 Individuals)	70
C.1 Input Scenario File	70
C.2 Example Screen Shot University of Moratuwa, Sri Lanka.	76
C.3 Complative Statistics derived based on Log file - 1st Simulation Session	77
C.4 Connulative Statistics derived based on Log file - 2nd Simulation Session	78

59

60

List of Figures

	Page
Figure 5.1 – Multi-agent based Design for Proposed Crowd Simulation Model	27
Figure 5.2 – Contents inside Common Ontology – An Example	28
Figure 5.3 – Contents inside a Rule	31
Figure 6.1 – Environment Setup Agent - Pseudocode	37
Figure 6.2 – Fire Agent - Pseudocode	38
Figure 6.3 – Individual Agent - Pseudocode	42
Figure 6.4 – Monitoring Agent - Pseudocode	
Figure 7.1 – Variation of Cumulative Individual Count with Time	
Experiment 1 (with 10 Individuals), Simulation Session 1	50
Figure 7.2 – Variation of Cumulative Individual Count with Time	
Experiment 1 (with 10 Individuals), Simulation Session 2	51
Figure 7.3 – Variation of Cumulative Individual Count with Time	
Experiment 2 (with 30 Individuals), Simulation Session 1 University of Moratuwa, Sri Lanka. Figure 7.4 – Variation of Cumulative Individual Count with Time	52
Experiment 2 (with 30 Individuals), Simulation Session 2	53

List of Tables

	Page
Table 6.1: Message Types Exchanged between Agents	36
Table 6.2: Initial "Local Ontology" for a Fire Warden	39
Table 6.3: Initial "Local Ontology" for a Normal Person	40
Table 7.1: Individual Escape Statistics for Scenario 1 – Simulation Session 1	49

University of Moratuwa, Sri Lanka. Electronic Theses & Dissertations www.lib.mrt.ac.lk